首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >A Dynamic In-Search Data Selection Method With Its Applications to Acoustic Modeling and Utterance Verification
【24h】

A Dynamic In-Search Data Selection Method With Its Applications to Acoustic Modeling and Utterance Verification

机译:动态搜索数据选择方法及其在声学建模和话语验证中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a dynamic in-search data selection method to diagnose competing information automatically from speech data. In our method, the Viterbi beam search is used to decode all training data. During decoding, all partial paths within the beam are examined to identify the so-called competing-token and true-token sets for each individual hidden Markov model (HMM). In this work, the collected data tokens are used for acoustic modeling and utterance verification as two specific examples. In acoustic modeling, the true-token sets are used to adapt HMMs with a sequential maximum a posteriori adaptation method, while a generalized probabilistic descent-based discriminative training method is proposed to improve HMMs based on competing-token sets. In utterance verification, under the framework of likelihood ratio testing, the true-token sets are employed to train positive models for the null hypothesis and the competing-token sets are used to estimate negative models for the alternative hypothesis. All the proposed methods are evaluated in Bell Laboratories communicator system. Experimental results show that the new acoustic modeling method can consistently improve recognition performance over our best maximum likelihood estimation models, roughly 1% absolute reduction in word error rate. The results also show the new verification models can significantly improve the performance of utterance verification over the conventional anti models, almost relatively 30% reduction of equal error rate when identifying misrecognized words from the recognition results.
机译:在本文中,我们提出了一种动态的搜索数据选择方法,可以自动从语音数据中诊断竞争信息。在我们的方法中,维特比波束搜索用于解码所有训练数据。在解码期间,检查波束内的所有部分路径,以识别每个单独的隐马尔可夫模型(HMM)的所谓竞争令牌和真实令牌集。在这项工作中,作为两个特定示例,将收集到的数据令牌用于声学建模和话语验证。在声学建模中,真实令牌集用于采用顺序最大后验自适应方法来自适应HMM,而提出了一种基于竞争概率集合的广义概率后裔判别训练方法来改进HMM。在话语验证中,在似然比检验的框架下,真实令牌集用于训练零假设的正模型,而竞争令牌集则用于估计替代假设的负模型。所有提出的方法都在Bell Laboratories通信系统中进行了评估。实验结果表明,新的声学建模方法可以比我们最好的最大似然估计模型持续提高识别性能,字错误率的绝对减少约1%。结果还表明,新的验证模型与常规的反模型相比,可以显着提高发声验证的性能,从识别结果中识别误识别的单词时,平均错误率降低了近30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号