首页> 外文期刊>IEEE Transactions on Signal Processing >A Spatial–Temporal Subspace-Based Compressive Channel Estimation Technique in Unknown Interference MIMO Channels
【24h】

A Spatial–Temporal Subspace-Based Compressive Channel Estimation Technique in Unknown Interference MIMO Channels

机译:未知干扰MIMO信道中基于时空子空间的压缩信道估计技术

获取原文
获取原文并翻译 | 示例

摘要

Spatial-temporal (ST) subspace-based channel estimation techniques formulated with $ell 2$ minimum mean square error (MMSE) criterion alleviate the multi-access interference (MAI) problem when the interested signals exhibit low-rank property. However, the conventional $ell 2$ST subspace-based methods suffer from mean squared error (MSE) deterioration in unknown interference channels, due to the difficulty to separate the interested signals from the channel covariance matrices (CCMs) contaminated with unknown interference. As a solution to the problem, we propose a new $ell 1$ regularized ST channel estimation algorithm by applying the expectation-maximization (EM) algorithm to iteratively examine the signal subspace and the corresponding sparse-supports. The new algorithm updates the CCM independently of the slot-dependent $ell 1$ regularization, which enables it to correctly perform the sparse-independent component analysis (ICA) with a reasonable complexity order. Simulation results shown in this paper verify that the proposed technique significantly improves MSE performance in unknown interference MIMO channels, and hence, solves the BER floor problems from which the conventional receivers suffer.
机译:当感兴趣的信号表现出低秩特性时,用$ ell 2 $最小均方误差(MMSE)准则制定的基于时空(ST)子空间的信道估计技术缓解了多址干扰(MAI)问题。然而,由于难以将感兴趣的信号与受到未知干扰污染的信道协方差矩阵(CCM)分离,传统的基于 ell 2 $ ST子空间的方法在未知干扰信道中遭受均方误差(MSE)恶化。为了解决该问题,我们提出了一种新的$ ell 1 $正则化ST信道估计算法,方法是应用期望最大化(EM)算法迭代检查信号子空间和相应的稀疏支持。新算法独立于依赖于时隙的$ ell 1 $正则化更新CCM,从而使其能够以合理的复杂度顺序正确执行稀疏无关分量分析(ICA)。本文显示的仿真结果证明,该技术显着提高了未知干扰MIMO信道中的MSE性能,从而解决了传统接收机所遭受的BER最低问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号