首页> 外文期刊>IEEE Transactions on Signal Processing >Robust Two-Stage Reduced-Dimension Sparsity-Aware STAP for Airborne Radar With Coprime Arrays
【24h】

Robust Two-Stage Reduced-Dimension Sparsity-Aware STAP for Airborne Radar With Coprime Arrays

机译:具有共质体阵列的机载雷达的稳健的两级降维稀疏感知STAP

获取原文
获取原文并翻译 | 示例

摘要

Space-time adaptive processing (STAP) algorithms with coprime arrays can provide good clutter suppression potential with low cost in airborne radar systems as compared with their uniform linear arrays counterparts. However, the performance of these algorithms is limited by the training samples support in practical applications. To address this issue, a robust two-stage reduced-dimension (RD) sparsity-aware STAP algorithm is proposed in this work. In the first stage, an RD virtual snapshot is constructed using all spatial channels but only $m$ adjacent Doppler channels around the target Doppler frequency to reduce the slow-time dimension of the signal. In the second stage, an RD sparse measurement modeling is formulated based on the constructed RD virtual snapshot, where the sparsity of clutter and the prior knowledge of the clutter ridge are exploited to formulate an RD overcomplete dictionary. Moreover, an orthogonal matching pursuit (OMP)-like method is proposed to recover the clutter subspace. In order to set the stopping parameter of the OMP-like method, a robust clutter rank estimation approach is developed. Compared with recently developed sparsity-aware STAP algorithms, the size of the proposed sparse representation dictionary is much smaller, resulting in low complexity. Simulation results show that the proposed algorithm is robust to prior knowledge errors and can provide good clutter suppression performance in low sample support.
机译:与同类线性阵列相比,具有互质阵列的时空自适应处理(STAP)算法可在机载雷达系统中以低成本提供良好的杂波抑制潜力。但是,这些算法的性能受到实际应用中训练样本支持的限制。为了解决这个问题,在这项工作中提出了一种鲁棒的两级降维(RD)稀疏感知STAP算法。在第一阶段,使用所有空间通道,但仅在目标多普勒频率附近的m个相邻多普勒通道构建RD虚拟快照,以减小信号的慢时维。在第二阶段,基于构造的RD虚拟快照,建立RD稀疏测量模型,其中利用杂波的稀疏性和杂波脊的先验知识来制定RD超完备字典。此外,提出了一种类似正交匹配追踪(OMP)的方法来恢复杂乱子空间。为了设置类似OMP的方法的停止参数,开发了一种鲁棒的杂乱秩估计方法。与最近开发的稀疏感知STAP算法相比,提出的稀疏表示字典的大小要小得多,从而降低了复杂度。仿真结果表明,该算法对先验知识错误具有鲁棒性,在低样本支持下可以提供良好的杂波抑制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号