首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive Filter Approach for GPS Multipath Estimation Under Correntropy Criterion in Dynamic Multipath Environment
【24h】

Adaptive Filter Approach for GPS Multipath Estimation Under Correntropy Criterion in Dynamic Multipath Environment

机译:动态多径环境下基于熵准则的GPS多径自适应滤波方法

获取原文
获取原文并翻译 | 示例

摘要

For high-precision positioning and navigation systems, the positioning precision of receiver is jeopardized by multipath interference. Multipath suppression methods based on data processing have drawn much attention recently. The critical step of data processing-based method is to estimate multipath parameters. However, most multipath suppression methods falling into the category of data processing-based methods are limited to Gaussian noises, which means the performance of these methods may be degraded in non-Gaussian noises which are encountered quite often in reality. Besides, only static multipath case is studied in most existing literature, which is not sufficient for potential applications since the occurrence and the disappearance of multipath are always changeable along the movement of receiver. To address these problems, the maximum correntropy criterion(MCC) and the generalized maximum correntropy criterion(GMCC) are integrated into the traditional adaptive multipath estimation(AME) algorithm, named as MCC-AME and GMCC-AME, to handle the dynamic multipath estimation problem in non-Gaussian noises. Furthermore, MCC-AME and GMCC-AME are further improved by adopting forgetting factor, named as RMCC-AME and RGMCC-AME, to improve estimation accuracy and reduce time consumption in a recursive way. The four proposed algorithms also address the problems that the formerly proposed entropy-based multipath estimation algorithms are sensitive to the initial estimation and that the assumption of fixed number of multipath is required. The performance of the four proposed algorithms are analyzed and compared. The analytical results show that GMCC-AME outperforms MCC-AME regarding convergent speed, estimation accuracy and robustness, and RGMCC-AME performs even better than RMCC-AME in the same regard.
机译:对于高精度的定位和导航系统,接收机的定位精度会受到多径干扰的损害。基于数据处理的多径抑制方法近来引起了广泛关注。基于数据处理的方法的关键步骤是估计多径参数。但是,大多数属于基于数据处理的方法的多径抑制方法仅限于高斯噪声,这意味着这些方法的性能可能会在实际上经常遇到的非高斯噪声中降低。此外,在大多数现有文献中仅研究静态多径情况,这对于潜在的应用是不够的,因为多径的发生和消失总是随接收机的移动而变化。为了解决这些问题,将最大熵准则(MCC)和广义最大熵准则(GMCC)集成到称为MCC-AME和GMCC-AME的传统自适应多径估计(AME)算法中,以处理动态多径估计非高斯噪声的问题。此外,通过采用名为RMCC-AME和RGMCC-AME的遗忘因子,进一步改善了MCC-AME和GMCC-AME,从而以递归方式提高了估计准确性并减少了时间消耗。四种提出的算法还解决了以下问题:以前提出的基于熵的多径估计算法对初始估计敏感,并且需要假设固定数目的多径。分析并比较了四种算法的性能。分析结果表明,在收敛速度,估计精度和鲁棒性方面,GMCC-AME优于MCC-AME,并且在相同方面,RGMCC-AME的性能甚至优于RMCC-AME。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号