首页> 外文期刊>IEEE Transactions on Signal Processing >Algorithms and Fundamental Limits for Unlabeled Detection Using Types
【24h】

Algorithms and Fundamental Limits for Unlabeled Detection Using Types

机译:使用类型进行无标记检测的算法和基本限制

获取原文
获取原文并翻译 | 示例

摘要

We deal with the classical problem of testing two simple statistical hypotheses but, as a new element, it is assumed that the data vector is observed after an unknown permutation of its entries. What is the fundamental limit for the detection performance in this case? How much information for detection is contained in the entry values and how much in their positions? In the first part of this paper, we answer these questions. In the second part, we focus on practical algorithms. A low-complexity detector solves the detection problem without attempting to estimate the permutation. A modified version of the auction algorithm is then considered, and two greedy algorithms with affordable worst case complexity are presented. The detection operational characteristics of these detectors are investigated by computer experiments. The problem we address is referred to as unlabeled detection and is motivated by large sensor network applications, but applications are also foreseen in different fields, including image processing, social sensing, genome research, and molecular communication.
机译:我们处理测试两个简单统计假设的经典问题,但是作为一个新元素,我们假设数据向量是在其条目的未知排列之后被观察到的。在这种情况下,检测性能的基本限制是什么?输入值中包含多少检测信息,位置中包含多少信息?在本文的第一部分,我们回答这些问题。在第二部分中,我们重点介绍实用算法。低复杂度检测器无需尝试估计排列即可解决检测问题。然后考虑拍卖算法的修改版本,并提出了两种具有可承受的最坏情况复杂度的贪婪算法。通过计算机实验研究了这些检测器的检测操作特性。我们解决的问题被称为未标记检测,是由大型传感器网络应用推动的,但也可以预见在不同领域的应用,包括图像处理,社会感知,基因组研究和分子通信。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号