首页> 外文期刊>IEEE Transactions on Signal Processing >Invertible Particle-Flow-Based Sequential MCMC With Extension to Gaussian Mixture Noise Models
【24h】

Invertible Particle-Flow-Based Sequential MCMC With Extension to Gaussian Mixture Noise Models

机译:基于可逆粒子流的顺序MCMC扩展至高斯混合噪声模型

获取原文
获取原文并翻译 | 示例

摘要

Sequential state estimation in non-linear and non-Gaussian state spaces has a wide range of applications in statistics and signal processing. One of the most effective non-linear filtering approaches, particle filtering, suffers from weight degeneracy in high-dimensional filtering scenarios. Several avenues have been pursued to address high dimensionality. Among these, particle flow filters construct effective proposal distributions by using invertible flow to migrate particles continuously from the prior distribution to the posterior, and sequential Markov chain Monte Carlo (SMCMC) methods use a Metropolis-Hastings (MH) accept-reject approach to improve filtering performance. In this paper, we propose to combine the strengths of invertible particle flow and SMCMC by constructing a composite MH kernel within the SMCMC framework using invertible particle flow. In addition, we propose a Gaussianmixture-model-based particle flow algorithm to construct effective MH kernels for multi-modal distributions. Simulation results show that for high-dimensional state estimation example problems, the proposed kernels significantly increase the acceptance rate with minimal additional computational overhead and improve estimation accuracy compared with state-of-the-art filtering algorithms.
机译:非线性和非高斯状态空间中的顺序状态估计在统计和信号处理中具有广泛的应用。粒子滤波是最有效的非线性滤波方法之一,在高维滤波场景中存在权重退化的问题。已经探索了解决高维度的几种方法。其中,粒子流过滤器通过使用可逆流将粒子从先前的分布连续迁移到后部来构造有效的建议分布,而顺序马尔可夫链蒙特卡洛(SMCMC)方法使用Metropolis-Hastings(MH)接受-拒绝方法来改进过滤性能。在本文中,我们建议通过使用可逆粒子流在SMCMC框架内构建复合MH核,以结合可逆粒子流和SMCMC的优势。此外,我们提出了一种基于高斯混合模型的粒子流算法来构造有效的多模式分布的MH核。仿真结果表明,对于高维状态估计示例问题,与最新的滤波算法相比,所提出的内核以最小的额外计算开销显着提高了接受率,并提高了估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号