首页> 外文期刊>IEEE Transactions on Signal Processing >Learning of Tree-Structured Gaussian Graphical Models on Distributed Data Under Communication Constraints
【24h】

Learning of Tree-Structured Gaussian Graphical Models on Distributed Data Under Communication Constraints

机译:通信约束下树形结构高斯图形模型对分布式数据的学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, learning of tree-structured Gaussian graphical models from distributed data is addressed. In our model, samples are stored in a set of distributed machines where each machine has access to only a subset of features. A central machine is then responsible for learning the structure based on received messages from the other nodes. We present a set of communication-efficient strategies, which are theoretically proved to convey sufficient information for reliable learning of the structure. In particular, our analyses show that even if each machine sends only the signs of its local data samples to the central node, the tree structure can still be recovered with high accuracy. Our simulation results on both synthetic and real-world datasets show that our strategies achieve a desired accuracy in inferring the underlying structure while spending a small budget on communication.
机译:在本文中,解决了从分布式数据中学习树状高斯图形模型的问题。在我们的模型中,样本存储在一组分布式计算机中,其中每个计算机只能访问一部分功能。然后,中央机器负责根据从其他节点接收到的消息来学习结构。我们提出了一套通信有效的策略,从理论上证明了这些策略可以传达足够的信息,以使结构可靠地学习。特别是,我们的分析表明,即使每台机器仅将其本地数据样本的符号发送到中心节点,树形结构仍然可以高精度地恢复。我们在综合和真实数据集上的仿真结果表明,我们的策略在推断基础结构的同时达到了预期的准确性,同时在通信上花费了少量预算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号