首页> 外文期刊>IEEE Transactions on Signal Processing >Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling
【24h】

Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling

机译:未知互耦合的MIMO雷达中基于稀疏贝叶斯学习的离网DOA估计

获取原文
获取原文并翻译 | 示例

摘要

In the practical radar with multiple antennas, the antenna imperfections degrade the system performance. In this paper, the problem of estimating the direction of arrival (DOA) in a multiple-input and multiple-output (MIMO) radar system with unknown mutual coupling effect between antennas is investigated. To exploit the target sparsity in the spatial domain, the compressed sensing based methods have been proposed by discretizing the detection area and formulating the dictionary matrix, so anoff-gridgap is caused by the discretization processes. In this paper, different from the present DOA estimation methods, both the off-grid gap due to the sparse sampling and the unknown mutual coupling effect between antennas are considered at the same time, and a novel sparse system model for DOA estimation is formulated. Then, a novel sparse Bayesian learning (SBL)-based method named sparse Bayesian learning with the mutual coupling (SBLMC) is proposed, where an expectation-maximum-based method is established to estimate all the unknown parameters including the noise variance, the mutual coupling vectors, the off-grid vector, and the variance vector of scattering coefficients. Additionally, the prior distributions for all the unknown parameters are theoretically derived. With regard to the DOA estimation performance, the proposed SBLMC method can outperform state-of-the-art methods in the MIMO radar with unknown mutual coupling effect, while keeping the acceptable computational complexity.
机译:在具有多个天线的实用雷达中,天线缺陷会降低系统性能。本文研究了在天线之间相互耦合效应未知的多输入多输出(MIMO)雷达系统中估计到达方向(DOA)的问题。为了利用空间域中的目标稀疏性,已经提出了一种基于压缩感知的方法,即离散化检测区域并制定字典矩阵,因此, n <斜体xmlns:mml = “ http://www.w3.org / 1998 / Math / MathML “ xmlns:xlink = ” http://www.w3.org/1999/xlink “>离网 ngap是由离散化过程引起的。本文与现有的DOA估计方法不同,同时考虑了稀疏采样引起的离网间隙和天线之间未知的互耦效应,建立了一种新颖的DOA稀疏系统模型。然后,提出了一种新的基于稀疏贝叶斯学习(SBL)的方法,即具有相互耦合的稀疏贝叶斯学习(SBLMC),其中建立了一种基于期望最大值的方法来估计所有未知参数,包括噪声方差,互斥量。耦合向量,离网向量和散射系数的方差向量。另外,理论上推导了所有未知参数的先验分布。关于DOA估计性能,在保持可接受的计算复杂度的同时,所提出的SBLMC方法可以在未知互耦效应的情况下胜过MIMO雷达中的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号