首页> 外文期刊>IEEE Transactions on Signal Processing >Noise Statistics Oblivious GARD For Robust Regression With Sparse Outliers
【24h】

Noise Statistics Oblivious GARD For Robust Regression With Sparse Outliers

机译:噪声统计量忽略了GARD,可用于稀疏离群值的稳健回归

获取原文
获取原文并翻译 | 示例

摘要

Linear regression models contaminated by Gaussian noise (inlier) and possibly unbounded sparse outliers are common in many signal processing applications. Sparse recovery inspired robust regression (SRIRR) techniques are shown to deliver high-quality estimation performance in such regression models. Unfortunately, most SRIRR techniques assumea prioriknowledge of noise statistics like inlier noise variance or outlier statistics like number of outliers. Both inlier and outlier noise statistics are rarely knowna priori, and this limits the efficient operation of many SRIRR algorithms. This paper proposes a novel noise statistics oblivious algorithm called residual ratio thresholding GARD (RRT-GARD) for robust regression in the presence of sparse outliers. RRT-GARD is developed by modifying the recently proposed noise statistics dependent greedy algorithm for robust denoising (GARD). Both finite sample and asymptotic analytical results indicate that RRT-GARD performs nearly similar to GARD witha prioriknowledge of noise statistics. Numerical simulations in real and synthetic data sets also point to the highly competitive performance of RRT-GARD.
机译:在许多信号处理应用中,受高斯噪声(内部)和可能无界的稀疏离群污染的线性回归模型很常见。稀疏恢复启发性鲁棒回归(SRIRR)技术在此类回归模型中显示出可提供高质量的估计性能。不幸的是,大多数SRIRR技术都假定 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999 / xlink “>先验 噪声统计信息(如内部噪声方差)或离群值统计信息(例如离群数)。很少知道内在和离群噪声统计信息 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3。 org / 1999 / xlink “>先验,这限制了许多SRIRR算法的有效运行。本文提出了一种新的噪声统计忽略算法,称为残差比阈值GARD(RRT-GARD),用于在稀疏异常值存在的情况下进行鲁棒回归。 RRT-GARD是通过修改最近提出的针对鲁棒降噪(GARD)的噪声统计相关贪婪算法而开发的。有限样本和渐近分析结果均表明RRT-GARD与GARD的性能几乎相似,其中 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink “>噪声统计的先验 nknowledge。实际和综合数据集中的数值模拟也指出了RRT-GARD极具竞争力的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号