首页> 外文期刊>IEEE Transactions on Signal Processing >A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization
【24h】

A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization

机译:用于非凸矩阵分解的非欧氏梯度下降框架

获取原文
获取原文并翻译 | 示例

摘要

We study convex optimization problems that feature low-rank matrix solutions. In such scenarios, non-convex methods offer significant advantages over convex methods due to their lower space complexity, as well as practical faster convergence. Under mild assumptions, these methods feature global convergence guarantees. In this paper, we extend the results on this matter by following a different path. We derive a non-Euclidean optimization framework in the non-convex setting that takes nonlinear gradient steps on the factors. Our framework enables the possibility to further exploit the underlying problem structures, such as sparsity or low-rankness on the factorized domain, or better dimensional dependence of the smoothness parameters of the objectives. We prove that the non-Euclidean methods enjoy the same rigorous guarantees as their Euclidean counterparts under appropriate assumptions. Numerical evidence with Fourier ptychography and FastText applications, using real data, shows that our approach can enhance solution quality, as well as convergence speed over the standard non-convex approaches.
机译:我们研究具有低秩矩阵解的凸优化问题。在这种情况下,非凸方法由于其较低的空间复杂度以及实用的更快的收敛性而比凸方法具有明显的优势。在温和的假设下,这些方法具有全局收敛性保证。在本文中,我们通过遵循不同的路径来扩展关于此问题的结果。我们在非凸设置中推导了一个非欧氏优化框架,该框架对这些因子采取了非线性梯度步骤。我们的框架使我们有可能进一步利用潜在的问题结构,例如因数分解域上的稀疏性或低等级性,或者目标的平滑度参数更好的尺寸依赖性。我们证明,在适当的假设下,非欧几里得方法与欧几里得方法具有相同的严格保证。使用实际数据进行的傅里叶指纹图谱分析和FastText应用程序的数值证据表明,与标准的非凸面方法相比,我们的方法可以提高解决方案的质量以及收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号