首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive recovery of a chirped sinusoid in noise. I. Performance of the RLS algorithm
【24h】

Adaptive recovery of a chirped sinusoid in noise. I. Performance of the RLS algorithm

机译:噪声中。正弦波的自适应恢复。一,RLS算法的性能

获取原文
获取原文并翻译 | 示例

摘要

The authors study the ability of the exponentially weighted recursive least square (RLS) algorithm to track a complex chirped exponential signal buried in additive white Gaussian noise (power P/sub n/). The signal is a sinusoid whose frequency is drifting at a constant rate Psi . lt is recovered using an M-tap adaptive predictor. Five principal aspects of the study are presented: the methodology of the analysis; proof of the quasi-deterministic nature of the data-covariance estimate R(k); a new analysis of RLS for an inverse system modeling problem; a new analysis of RLS for a deterministic time-varying model for the optimum filter; and an evaluation of the residual output mean-square error (MSE) resulting from the nonoptimality of the adaptive predictor (the misadjustment) in terms of the forgetting rate ( beta ) of the RLS algorithm. It is shown that the misadjustment is dominated by a lag term of order beta /sup -2/ and a noise term of order beta . Thus, a value beta /sub opt/ exists which yields a minimum misadjustment. It is proved that beta /sub opt/=((M+1) rho Psi /sup 2/)/sup 1/3/, and the minimum misadjustment is equal to (3/4)P/sub n/(M+1) beta /sub opt/, where rho is the input signal-to-noise ratio (SNR).
机译:作者研究了指数加权递归最小二乘(RLS)算法跟踪掩盖在加性高斯白噪声(功率P / sub n /)中的复杂线性调频指数信号的能力。该信号是正弦波,其频率以恒定速率Psi漂移。使用M-tap自适应预测器恢复。提出了研究的五个主要方面:分析方法;证明数据协方差估计R(k)的准确定性的证明;针对逆系统建模问题的RLS的新分析;对确定滤波器的确定性时变模型的RLS进行了新的分析;以及根据RLS算法的遗忘率(beta)评估由于自适应预测变量的非最优性(失调)导致的剩余输出均方误差(MSE)。结果表明,失调主要由β/ sup -2 /阶的滞后项和β阶的噪声项主导。因此,存在一个值beta / sub opt /,它产生最小的失调。证明beta / sub opt / =((M + 1)rh Psi / sup 2 /)/ sup 1/3 /,最小失调量等于(3/4)P / sub n /(M + 1)beta / sub opt /,其中rho是输入信噪比(SNR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号