首页> 外文期刊>IEEE Transactions on Signal Processing >The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase
【24h】

The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase

机译:具有恒定幅度和多项式相位的信号的Cramer-Rao下界

获取原文
获取原文并翻译 | 示例

摘要

The authors derive the Cramer-Rao lower bound (CRLB) for complex signals with constant amplitude and polynomial phase, measured in additive Gaussian white noise. The exact bound requires numerical inversion of an ill-conditioned matrix, while its O(N/sup -1/) approximation is free of matrix inversion. The approximation is tested for several typical parameter values and is found to be excellent in most cases. The formulas derived are of practical value in several radar applications, such as electronic intelligence systems (ELINT) for special pulse-compression radars, and motion estimation from Doppler measurements. Consequently, it is of interest to analyze the best possible performance of potential estimators of the phase coefficients, as a function of signal parameters, the signal-to-noise ratio, the sampling rate, and the number of measurements. This analysis is carried out.
机译:作者推导了具有恒定振幅和多项式相位的复杂信号的Cramer-Rao下界(CRLB),以加性高斯白噪声测量。确切的界限要求病态矩阵的数值反演,而其O(N / sup -1 /)近似值不包含矩阵反演。对近似值进行了几个典型参数值的测试,发现在大多数情况下都非常好。得出的公式在几种雷达应用中具有实用价值,例如用于特殊脉冲压缩雷达的电子智能系统(ELINT)以及根据多普勒测量进行的运动估计。因此,有必要分析作为信号参数,信噪比,采样率和测量次数的函数的相位系数潜在估计器的最佳性能。进行该分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号