首页> 外文期刊>IEEE Transactions on Signal Processing >Time-delay estimation for filtered Poisson processes using an EM-type algorithm
【24h】

Time-delay estimation for filtered Poisson processes using an EM-type algorithm

机译:使用EM型算法对滤波后的Poisson过程进行时延估计

获取原文
获取原文并翻译 | 示例

摘要

We develop a modified EM algorithm to estimate a nonrandom time shift parameter of an intensity associated with an inhomogeneous Poisson process N/sub t/, whose points are only partially observed as a noise-contaminated output X of a linear time-invariant filter excited by a train of delta functions, a filtered Poisson process. The exact EM algorithm for computing the maximum likelihood time shift estimate generates a sequence of estimates each of which attempt to maximize a measure of similarity between the assumed shifted intensity and the conditional mean estimate of the Poisson increment dN/sub t/. We modify the EM algorithm by using a linear approximation to this conditional mean estimate. The asymptotic performance of the modified EM algorithm is investigated by an asymptotic estimator consistency analysis. We present simulation results that show that the linearized EM algorithm converges rapidly and achieves an improvement over conventional time-delay estimation methods, such as linear matched filtering and leading edge thresholding. In these simulations our algorithm gives estimates of time delay whose mean square error virtually achieves the CR lower bound for high count rates.
机译:我们开发了一种改进的EM算法来估计与非均匀泊松过程N / sub t /相关的强度的非随机时移参数,其点仅部分被观测为线性时不变滤波器激发的噪声污染输出X一连串的三角函数,一个经过过滤的泊松过程。用于计算最大似然时移估计值的精确EM算法会生成一系列估计值,每个估计值都试图最大化假设的移动强度与泊松增量dN / sub t /的条件平均估计值之间的相似度。我们通过使用线性逼近此条件均值估计来修改EM算法。通过渐近估计量一致性分析研究了改进的EM算法的渐近性能。我们提供的仿真结果表明,线性化EM算法收敛迅速,并且比常规的时延估计方法(例如线性匹配滤波和前沿阈值)获得了改进。在这些仿真中,我们的算法给出了时间延迟的估计值,其均方误差实际上可实现高计数率的CR下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号