首页> 外文期刊>IEEE Transactions on Signal Processing >Delta Levinson and Schur-type RLS algorithms for adaptive signal processing
【24h】

Delta Levinson and Schur-type RLS algorithms for adaptive signal processing

机译:Delta Levinson和Schur型RLS算法用于自适应信号处理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop delta operator based Levinson and Schur type on-line RLS algorithms. Such algorithms have the potential of improved numerical behavior for ill-conditioned input data. These new algorithms are obtained by a unified transformation on the existing q operator based ones. We first show that the conventional lattice structure can be naturally derived when the backward delta operator is used. With this operator, Levinson and Schur algorithms for the stationary stochastic model in q-domain can easily be transformed into the delta domain. Then, same transformation, will be applied to the q-domain on-line Levinson and Schur type RLS algorithms to obtain the delta-domain counterparts. Their normalized versions as well as a systolic array architecture implementing the new delta Schur RLS algorithm are proposed. Extension to the equal length multichannel case is also given. Computer simulations show the expected numerical advantages of the delta-based algorithms for fast-sampled data in real time, over the q-domain ones under finite precision implementation.
机译:在本文中,我们开发了基于增量算子的Levinson和Schur型在线RLS算法。对于病态输入数据,此类算法具有改善数字行为的潜力。这些新算法是通过对现有基于q运算符的算法进行统一转换而获得的。我们首先表明,当使用反向增量算子时,自然可以得出传统的晶格结构。使用该运算符,可以轻松地将q域中的平稳随机模型的Levinson和Schur算法转换成delta域。然后,将相同的变换应用于q域在线Levinson和Schur类型的RLS算法,以获得对应的delta域。提出了它们的规范化版本以及实现新的delta Schur RLS算法的脉动阵列架构。还给出了对等长多通道情况的扩展。计算机仿真显示了在有限精度实现下,基于q值算法的实时实时定量数据优于q域算法的预期数值优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号