首页> 外文期刊>IEEE Transactions on Signal Processing >A neural net algorithm for multidimensional minimum relative-entropy spectral analysis
【24h】

A neural net algorithm for multidimensional minimum relative-entropy spectral analysis

机译:多维最小相对熵谱分析的神经网络算法

获取原文
获取原文并翻译 | 示例

摘要

A neural net algorithm is presented to solve the general 1-D or multidimensional minimum relative-entropy spectral analysis. The problem is formulated as a primal constrained optimization and is reduced to solving an initial value problem of differential equation of Lyapunov type. The initial value problem of Lyapunov system comprises the basis of the neural net algorithm. Experiments with simulated data convincingly showed that the algorithm did provide the multidimensional minimum relative-entropy spectral estimator with the autocorrelation matching property with computational efficiency.
机译:提出了一种神经网络算法来求解一般的一维或多维最小相对熵谱分析。该问题被表述为原始约束优化,并简化为解决Lyapunov型微分方程的初值问题。 Lyapunov系统的初值问题包括神经网络算法的基础。模拟数据的实验令人信服地表明,该算法确实为多维最小相对熵谱估计器提供了具有自相关匹配特性的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号