首页> 外文期刊>IEEE Transactions on Signal Processing >Nonlinear maximum likelihood estimation of autoregressive time series
【24h】

Nonlinear maximum likelihood estimation of autoregressive time series

机译:自回归时间序列的非线性最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

Describes an algorithm for finding the exact, nonlinear, maximum likelihood (ML) estimators for the parameters of an autoregressive time series. The authors demonstrate that the ML normal equations can be written as an interdependent set of cubic and quadratic equations in the AR polynomial coefficients. They present an algorithm that algebraically solves this set of nonlinear equations for low-order problems. For high-order problems, the authors describe iterative algorithms for obtaining a ML solution.
机译:描述一种算法,用于为自回归时间序列的参数找到精确的非线性最大似然(ML)估计量。作者证明ML正规方程可以写成AR多项式系数中相互依存的三次方程和​​二次方程组。他们提出了一种代数求解低阶问题的非线性方程组的算法。对于高阶问题,作者描述了获得ML解的迭代算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号