首页> 外文期刊>IEEE Transactions on Signal Processing >Filtering random noise from deterministic signals via data compression
【24h】

Filtering random noise from deterministic signals via data compression

机译:通过数据压缩从确定性信号中滤除随机噪声

获取原文
获取原文并翻译 | 示例

摘要

We present a novel technique for the design of filters for random noise, leading to a class of filters called Occam filters. The essence of the technique is that when a lossy data compression algorithm is applied to a noisy signal with the allowed loss set equal to the noise strength, the loss and the noise tend to cancel rather than add. We give two illustrative applications of the technique to univariate signals. We also prove asymptotic convergence bounds on the effectiveness of Occam filters.
机译:我们提出了一种用于随机噪声的滤波器设计的新颖技术,从而产生了一类称为Occam滤波器的滤波器。该技术的本质是,当将有损数据压缩算法应用于噪声信号,且将允许的损耗设置为等于噪声强度时,损耗和噪声趋向于抵消而不是相加。我们给出了该技术对单变量信号的两个说明性应用。我们还证明了Occam滤波器的有效性的渐近收敛边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号