首页> 外文期刊>IEEE Transactions on Signal Processing >Search-efficient methods of detection of cyclostationary signals
【24h】

Search-efficient methods of detection of cyclostationary signals

机译:搜索有效的循环平稳信号检测方法

获取原文
获取原文并翻译 | 示例

摘要

Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computational complexity and storage and search arise. This paper introduces two new search-efficient methods of cycle detection, namely the autocorrelated cyclic autocorrelation (ACA) and the autocorrelated cyclic periodogram (ACP) methods. For a given level of performance reliability, the ACA and ACP methods allow much larger resolution width in cycle frequency to be used in their implementations, compared to the conventional methods of cyclic spectral analysis. Thus, the amount of storage and search can be substantially reduced. Analyses of the two methods, performance comparison, and computer simulation results are presented.
机译:利用循环平稳性来检测噪声中的微弱信号的常规信号处理方法要求在周期频率上具有较高的分辨率,以实现较长的积分时间。因此,在弱信号检测和宽带搜索的情况下,在实现中出现了问题,例如过度的计算复杂性以及存储和搜索。本文介绍了两种新的搜索有效的循环检测方法,即自相关循环自相关(ACA)和自相关循环周期图(ACP)方法。对于给定的性能可靠性水平,与常规的循环频谱分析方法相比,ACA和ACP方法允许在其实现中使用更大的循环频率分辨率宽度。因此,可以大大减少存储和搜索的数量。介绍了两种方法的性能比较和计算机仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号