首页> 外文期刊>IEEE Transactions on Signal Processing >Noncooperative target classification using hierarchical modeling of high-range resolution radar signatures
【24h】

Noncooperative target classification using hierarchical modeling of high-range resolution radar signatures

机译:使用高分辨雷达信号的分层建模进行非合作目标分类

获取原文
获取原文并翻译 | 示例

摘要

The classification of high-range resolution (HRR) radar signatures using multiscale features is considered. We present a hierarchical autoregressive moving average (ARMA) model for modeling HRR radar signals at multiple scales and use spectral features extracted from the model for classifying radar signatures. First, we show that the radar signal at a different scale obeys an ARMA process if it is an ARMA process at the observed scale. Then, an algorithm to estimate model parameters and power spectral density function at different scales using model parameters at the observed scale is presented. A feature set composed of spectral peaks is extracted from the estimated spectral density function using multiscale ARMA models. For HRR radar signature classification, multispectral features extracted from five different scales are used, and a minimum distance classifier with multiple prototypes is used to classify HRR data. The multiscale classifier is applied to two HRR radar data sets. Each data set contains 2500 test samples and 2500 training samples in five classes. For both data sets, about 95% of the radar returns are correctly classified.
机译:考虑使用多尺度特征对高分辨力(HRR)雷达信号进行分类。我们提出了一种分层自回归移动平均(ARMA)模型,用于在多个尺度上对HRR雷达信号进行建模,并使用从模型中提取的频谱特征对雷达特征进行分类。首先,我们表明,如果雷达信号在所观察的范围内是ARMA进程,则在不同尺度上的雷达信号将遵循ARMA进程。然后,提出了一种使用观测尺度的模型参数估计不同尺度的模型参数和功率谱密度函数的算法。使用多尺度ARMA模型从估计的光谱密度函数中提取由光谱峰组成的特征集。对于HRR雷达特征分类,使用从五个不同尺度提取的多光谱特征,并使用具有多个原型的最小距离分类器对HRR数据进行分类。多尺度分类器应用于两个HRR雷达数据集。每个数据集包含五个类别的2500个测试样本和2500个训练样本。对于这两个数据集,正确分类了约95%的雷达回波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号