首页> 外文期刊>IEEE Transactions on Signal Processing >On subspace methods for blind identification of single-input multiple-output FIR systems
【24h】

On subspace methods for blind identification of single-input multiple-output FIR systems

机译:关于单输入多输出FIR系统的盲识别的子空间方法

获取原文
获取原文并翻译 | 示例

摘要

Blind identification of single-input multiple-output (SIMO) FIR systems based on second-order statistics has attracted a great deal of research effort. We focus on subspace estimation procedures, which exploit the structure of the range space of certain matrix-valued statistics constructed by arranging in a prescribed order the covariance coefficients of the observations. General subspace identifiability results are obtained, based on properties of minimal polynomial bases of rational subspaces. Several subspace estimation procedures are then derived. These estimators are all based on a weighted least-square solution of an overdetermined system of linear equations. An asymptotic statistical analysis of these estimators is carried out to evaluate the potential of these methods and the impact of the weighting.
机译:基于二阶统计量的单输入多输出(SIMO)FIR系统的盲识别吸引了大量研究工作。我们专注于子空间估计程序,该程序利用通过以规定的顺序排列观测值的协方差系数构造的某些矩阵值统计量的范围空间的结构。基于有理子空间的最小多项式基的性质,获得了一般子空间可识别性的结果。然后推导几种子空间估计程序。这些估计器都是基于超定线性方程组的加权最小二乘解。对这些估计量进行渐近统计分析,以评估这些方法的潜力以及加权的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号