首页> 外文期刊>IEEE Transactions on Signal Processing >An improved reduced-rank CFAR space-time adaptive radar detection algorithm
【24h】

An improved reduced-rank CFAR space-time adaptive radar detection algorithm

机译:改进的降阶CFAR时空自适应雷达检测算法

获取原文
获取原文并翻译 | 示例

摘要

The CFAR test developed in previous work is a normalized ratio test for signals in nonwhite Gaussian noise. However, in the airborne radar environment, the noise consists of strong interference and a relatively weak thermal noise, in the case of a large interference-to-thermal noise ratio, this test can be simplified to the reduced-rank CFAR test developed previously, which operates in an interference-free subspace without the need for matrix inversion operations. This test is extended in this paper to one that includes both the primary and secondary data as defined by Bose and Steinhardt (see ibid., vol.43, p.2164-75, 1995), it is also shown that this test can be modified to obtain a dramatically improved performance. A much smaller amount of sample data is needed in this new improved algorithm to achieve a given probability of detection than is required by this test. Finally, the performance of this new reduced-rank CFAR test statistic is analyzed, and a simulation is performed for an example scenario in order to validate the theoretical results.
机译:先前工作中开发的CFAR测试是针对非高斯白噪声中信号的归一化比率测试。但是,在机载雷达环境中,噪声由强干扰和相对弱的热噪声组成,在干扰与热噪声比较大的情况下,此测试可以简化为先前开发的降级CFAR测试,它可以在无干扰子空间中运行,而无需矩阵求逆运算。该测试在本文中扩展为既包含Bose和Steinhardt定义的主要数据又包含次要数据的数据(同上,第43卷,第2164-75页,1995年),也表明该测试可以进行修改以获得显着改善的性能。这种新的改进算法所需的样本数据量要比该测试所需的样本数据少得多,以实现给定的检测概率。最后,分析了这种新的降级CFAR测试统计数据的性能,并对示例场景进行了仿真,以验证理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号