首页> 外文期刊>IEEE Transactions on Signal Processing >Estimation of the number of signals from features of the covariance matrix: a supervised approach
【24h】

Estimation of the number of signals from features of the covariance matrix: a supervised approach

机译:从协方差矩阵的特征估计信号数量:一种有监督的方法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to provide a fast and simplified detection test for use in the presence of a small number of sources (from 0-2), which is able to accommodate correlated paths and nonwhite noise; conventional eigenvalue-based criteria are unable to do so. For a uniform linear array, using common sense arguments, a small set of significant features of the covariance matrix are used as inputs to a neural net. The nonlinear transfer function of the neural net is adjusted by supervised training to provide the discriminant functions for order selection in its outputs. Results from the net are then compared with conventional criteria and demonstrate superior performance, in particular, for correlated sources and small sample sizes. Training may be introduced for known nonwhite noise, which serves to maintain high performance for reasonable correlation lengths.
机译:本文的目的是提供一种快速,简化的检测测试,以在少量信号源(0-2)的情况下使用,该信号源能够适应相关路径和非白噪声。传统的基于特征值的标准无法做到这一点。对于一个统一的线性数组,使用常识参数,将协方差矩阵的一小部分重要特征用作神经网络的输入。通过监督训练来调整神经网络的非线性传递函数,从而为输出中的顺序选择提供判别函数。然后将来自网络的结果与常规标准进行比较,并显示出优异的性能,特别是在相关来源和小样本量的情况下。可以针对已知的非白噪声引入训练,该训练可以在合理的相关长度下保持高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号