首页> 外文期刊>IEEE Transactions on Signal Processing >Fluctuation analysis of a two-layer backpropagation algorithm used for modeling nonlinear memoryless channels
【24h】

Fluctuation analysis of a two-layer backpropagation algorithm used for modeling nonlinear memoryless channels

机译:用于非线性无记忆通道建模的两层反向传播算法的波动分析

获取原文
获取原文并翻译 | 示例

摘要

Neural networks have been used to model the nonlinear characteristics of memoryless nonlinear channels using the backpropagation learning (BP) with experimental training data. The mean transient and convergence behavior of a simplified two-layer neural network has been studied previously in order to better understand this neural network application. The network was trained with zero mean Gaussian data. This paper extends these results to include the effects of the weight fluctuations on the mean square error (MSE). A new methodology is presented that can be extended to other nonlinear learning problems. The new mathematical model is able to predict the MSE learning behavior as a function of the algorithm step size /spl mu/. The performance analysis is based on the derivation of linear recursions for the variance and covariance of the weights that depend nonlinearly on the mean weights. These linear recursions can be used to predict the local mean-square stability of the weights. As in linear gradient search problems (LMS, etc.), it is shown that there exists an optimum p (minimizing the MSE), which is the result of the tradeoff between fast learning and small weight fluctuations. Monte Carlo simulations display excellent agreement between the actual behavior and the predictions of the theoretical model over a wide range of /spl mu/ values.
机译:神经网络已被用于通过反向传播学习(BP)和实验训练数据对无记忆非线性通道的非线性特征进行建模。以前已经研究了简化的两层神经网络的平均瞬态和收敛行为,以便更好地理解该神经网络的应用。该网络使用零均值高斯数据进行训练。本文将这些结果扩展到包括权重波动对均方误差(MSE)的影响。提出了一种可以扩展到其他非线性学习问题的新方法。新的数学模型能够根据算法步长/ spl mu /预测MSE学习行为。性能分析基于线性递归的推导,即权重的方差和协方差非线性地取决于平均权重。这些线性递归可用于预测权重的局部均方稳定性。如线性梯度搜索问题(LMS等)中所示,存在一个最优的p(最小化MSE),这是快速学习和较小的权重波动之间权衡的结果。蒙特卡洛模拟显示,在很大的/ spl mu /值范围内,实际行为与理论模型的预测之间具有极好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号