首页> 外文期刊>IEEE Transactions on Signal Processing >Entropy-constrained scalar quantization and minimum entropy with error bound by discrete wavelet transforms in image compression
【24h】

Entropy-constrained scalar quantization and minimum entropy with error bound by discrete wavelet transforms in image compression

机译:图像压缩中的熵约束标量量化和具有离散小波变换误差的最小熵

获取原文
获取原文并翻译 | 示例

摘要

The global maximum of an entropy function with different decision levels for a three-level scalar quantizer performed after a discrete wavelet transform was derived. Herein, we considered the case of entropy-constrained scalar quantization capable of avoiding many compression ratio reductions as the mean squared error was minimized. We also dealt with the problem of minimum entropy with an error bound, which was referred to as the rate distortion function. For generalized Gaussian distributed input signals, the Shannon bound would decrease monotonically when the parameter of distribution /spl gamma/ was to leave from 2. That is Gaussian distributions would contain the highest Shannon bound among the generalized Gaussian distributions. Additionally, we proposed two numerical approaches of the secant and false position methods implemented in real cases to solve the problems of entropy-constrained scalar quantization and minimum entropy with an error bound. The convergence condition of the secant method was also addressed.
机译:导出离散小波变换后执行的三级标量量化器具有不同决策级的熵函数的全局最大值。在本文中,我们考虑了熵约束标量量化的情况,该方法可以避免由于均方误差最小而导致的许多压缩比降低。我们还处理了带有误差范围的最小熵的问题,这被称为速率失真函数。对于广义的高斯分布输入信号,当分布参数/ spl gamma /离开2时,香农界将单调减少。也就是说,高斯分布将包含广义高斯分布中最高的香农界。此外,我们提出了在实际情况下实现的割线和伪位置方法的两种数值方法,以解决熵约束的标量量化和带有误差界的最小熵的问题。还解决了割线方法的收敛条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号