首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive weighted median filters admitting negative weights and their optimization
【24h】

Recursive weighted median filters admitting negative weights and their optimization

机译:允许负权重的递归加权中值滤波器及其优化

获取原文
获取原文并翻译 | 示例

摘要

A recursive weighted median (RWM) filter structure admitting negative weights is introduced. Much like the sample median is analogous to the sample mean, the proposed class of RWM filters is analogous to the class of infinite impulse response (IIR) linear filters. RWM filters provide advantages over linear IIR filters, offering near perfect "stopband" characteristics and robustness against noise. Unlike linear IIR filters, RWM filters are always stable under the bounded-input bounded-output criterion, regardless of the values taken by the feedback filter weights. RWM filters also offer a number of advantages over their nonrecursive counterparts, including a significant reduction in computational complexity, increased robustness to noise, and the ability to model "resonant" or vibratory behavior. A novel "recursive decoupling" adaptive optimization algorithm for the design of this class of recursive WM filters is also introduced. Several properties of RWM filters are presented, and a number of simulations are included to illustrate the advantages of RWM filters over their nonrecursive counterparts and IIR linear filters.
机译:介绍了允许负权重的递归加权中值(RWM)滤波器结构。就像样本中位数类似于样本均值一样,所建议的RWM滤波器类别类似于无限脉冲响应(IIR)线性滤波器类别。 RWM滤波器提供了优于线性IIR滤波器的优势,具有接近完美的“阻带”特性和抗噪声能力。与线性IIR滤波器不同,RWM滤波器在有界输入有界输出标准下始终保持稳定,而与反馈滤波器权重取值无关。与非递归滤波器相比,RWM滤波器还具有许多优势,包括显着降低了计算复杂性,增强了对噪声的鲁棒性以及对“共振”或振动行为进行建模的能力。还介绍了一种新颖的“递归解耦”自适应优化算法,用于设计此类递归WM滤波器。介绍了RWM滤波器的一些属性,并进行了许多仿真,以说明RWM滤波器相对于其非递归对应物和IIR线性滤波器的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号