首页> 外文期刊>IEEE Transactions on Signal Processing >Change detection in teletraffic models
【24h】

Change detection in teletraffic models

机译:流量模型中的变化检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a likelihood-based ratio test to detect distributional changes in common teletraffic models. These include traditional models like the Markov modulated Poisson process and processes exhibiting long range dependency, in particular, Gaussian fractional ARIMA processes. A practical approach is also developed for the case where the parameter after the change is unknown. It is noticed that the algorithm is robust enough to detect slight perturbations of the parameter value after the change. A comprehensive set of numerical results including results for the mean detection delay is provided.
机译:我们提出了一种基于似然比的比率测试,以检测常见的交通模型中的分布变化。这些包括传统模型,例如马尔可夫调制泊松过程和表现出长期依赖性的过程,特别是高斯分数ARIMA过程。对于更改后的参数未知的情况,还开发了一种实用的方法。注意,该算法足够健壮,可以检测到更改后参数值的轻微扰动。提供了一组全面的数值结果,包括平均检测延迟的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号