首页> 外文期刊>IEEE Transactions on Signal Processing >Predictive vector quantizer design using deterministic annealing
【24h】

Predictive vector quantizer design using deterministic annealing

机译:使用确定性退火的预测矢量量化器设计

获取原文
获取原文并翻译 | 示例

摘要

A new approach is proposed for predictive vector quantizer (PVQ) design, which is inherently probabilistic, and is based on ideas from information theory and analogies to statistical physics. The approach effectively resolves three longstanding fundamental shortcomings of standard PVQ design. The first complication is due to the PVQ prediction loop, which has a detrimental impact on the convergence and the stability of the design procedure. The second shortcoming is due to the piecewise constant nature of the quantizer function, which makes it difficult to optimize the predictor with respect to the overall reconstruction error. Finally, a shortcoming inherited from standard VQ design is the tendency of the design algorithm to terminate at a locally, rather than the globally, optimal solution. We propose a new PVQ design approach that embeds our previous asymptotic closed-loop (ACL) approach within a deterministic annealing (DA) framework. The overall DA-ACL method profits from its two main components in a complementary way. ACL is used to overcome the first difficulty and offers the means for stable quantizer design as it provides an open-loop design platform, yet allows the PVQ design algorithm to asymptotically converge to optimization of the closed-loop performance objective. DA simultaneously mitigates or eliminates the remaining design shortcomings. Its probabilistic framework replaces hard quantization with a differentiable expected cost function that can be jointly optimized for the predictor and quantizer parameters, and its annealing schedule allows the avoidance of many poor local optima. Substantial performance gains over traditional methods have been achieved in the simulations.
机译:提出了一种用于预测矢量量化器(PVQ)设计的新方法,该方法具有固有的概率,并且基于从信息论和类比到统计物理学的思想。该方法有效地解决了标准PVQ设计的三个长期存在的基本缺陷。第一个复杂性归因于PVQ预测循环,它对设计过程的收敛性和稳定性产生不利影响。第二个缺点是由于量化函数的分段恒定性质,这使得难以针对整体重构误差优化预测器。最后,从标准VQ设计继承的一个缺点是设计算法倾向于在局部而不是全局的最佳解决方案处终止。我们提出了一种新的PVQ设计方法,该方法将我们以前的渐近闭环(ACL)方法嵌入到确定性退火(DA)框架中。整体DA-ACL方法以互补的方式从其两个主要组件中获利。 ACL用于克服第一个难题,并提供稳定的量化器设计,因为它提供了开环设计平台,但允许PVQ设计算法渐近收敛于优化闭环性能目标。 DA同时缓解或消除了其余的设计缺陷。它的概率框架用可区分的预期成本函数代替了硬量化,该函数可以针对预测变量和量化参数进行优化,其退火进度表可以避免许多较差的局部最优。在仿真中已经实现了优于传统方法的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号