首页> 外文期刊>IEEE Transactions on Signal Processing >A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays
【24h】

A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays

机译:传感器阵列源定位的稀疏信号重构视角

获取原文
获取原文并翻译 | 示例

摘要

We present a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing penalties based on the l_(1)-norm. A number of recent theoretical results on sparsifying properties of l_(1) penalties justify this choice. Explicitly enforcing the sparsity of the representation is motivated by a desire to obtain a sharp estimate of the spatial spectrum that exhibits super-resolution. We propose to use the singular value decomposition (SVD) of the data matrix to summarize multiple time or frequency samples. Our formulation leads to an optimization problem, which we solve efficiently in a second-order cone (SOC) programming framework by an interior point implementation. We propose a grid refinement method to mitigate the effects of limiting estimates to a grid of spatial locations and introduce an automatic selection criterion for the regularization parameter involved in our approach. We demonstrate the effectiveness of the method on simulated data by plots of spatial spectra and by comparing the estimator variance to the Cramer-Rao bound (CRB). We observe that our approach has a number of advantages over other source localization techniques, including increased resolution, improved robustness to noise, limitations in data quantity, and correlation of the sources, as well as not requiring an accurate initialization.
机译:我们提出了一种基于传感器测量的稀疏表示的源定位方法,该方法由阵列歧管中的样本组成,具有不完全的基础。我们通过基于l_(1)-范数施加惩罚来实施稀疏性。关于l_(1)惩罚的稀疏性质的许多最新理论结果证明了这一选择的正确性。渴望获得对显示超分辨率的空间频谱的清晰估计,从而促使显式执行表示的稀疏性。我们建议使用数据矩阵的奇异值分解(SVD)来汇总多个时间或频率样本。我们的公式提出了一个优化问题,我们可以通过内部点实现在二阶锥(SOC)编程框架中有效地解决该问题。我们提出了一种网格细化方法,以减轻将估计限制于空间位置的网格的影响,并为我们的方法所涉及的正则化参数引入自动选择标准。我们通过空间频谱图并通过将估计量方差与Cramer-Rao边界(CRB)进行比较,证明了该方法对模拟数据的有效性。我们观察到,与其他源定位技术相比,我们的方法具有许多优势,包括提高分辨率,提高对噪声的鲁棒性,数据量的限制以及源的相关性,以及不需要精确的初始化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号