首页> 外文期刊>IEEE Transactions on Signal Processing >On the Residual Variance and the Prediction Error for the LSF Estimation Method and New Modified Finite Sample Criteria for Autoregressive Model Order Selection
【24h】

On the Residual Variance and the Prediction Error for the LSF Estimation Method and New Modified Finite Sample Criteria for Autoregressive Model Order Selection

机译:LSF估计方法的残差和预测误差以及自回归模型阶数选择的新修正有限样本准则

获取原文
获取原文并翻译 | 示例

摘要

The case where the data sample size is finite and the Least-Squares-Forward (LSF) method is used for autoregressive (AR) parameter estimation is considered. New formulas describing the residual variance and the prediction error behaviors in AR parameter estimation are derived, and the relation between the residual variance and the prediction error is determined. Based on this relation, the existing finite sample criteria for AR model order selection are modified, and it is shown that these modified criteria have better performance.
机译:考虑以下情况:数据样本大小是有限的,并且使用最小二乘法(LSF)方法进行自回归(AR)参数估计。推导了描述AR参数估计中的残差和预测误差行为的新公式,并确定了残差和预测误差之间的关系。基于此关系,对现有用于AR模型订单选择的有限样本标准进行了修改,结果表明,这些修改后的标准具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号