首页> 外文期刊>IEEE Transactions on Signal Processing >A CFAR Adaptive Subspace Detector for Second-Order Gaussian Signals
【24h】

A CFAR Adaptive Subspace Detector for Second-Order Gaussian Signals

机译:用于二阶高斯信号的CFAR自适应子空间检测器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of detecting subspace signals described by the Second-Order Gaussian (SOG) model in the presence of noise whose covariance structure and level are both unknown. Such a detection problem is often called Gauss-Gauss problem in that both the signal and the noise are assumed to have Gaussian distributions. We propose adaptive detectors for the SOG model signals based on a single observation and multiple observations. With a single observation, the detector can be derived in a manner similar to that of the generalized likelihood ratio test (GLRT), but the unknown covariance structure is replaced by sample covariance matrix based on training data. The proposed detectors are constant false alarm rate (CFAR) detectors. As a comparison, we also derive adaptive detectors for the First-Order Gaussian (FOG) model based on multiple observations under the same noise condition as for the SOG model. With a single observation, the seemingly ad hoc CFAR detector for the SOG model is a true GLRT in that it has the same form as the GLRT CFAR detector for the FOG model. We give an approximate closed form of the probability of detection and false alarm in this case. Furthermore, we study the proposed CFAR detectors and compute the performance curves.
机译:在本文中,我们研究了在存在协方差结构和水平都未知的噪声的情况下检测由二阶高斯(SOG)模型描述的子空间信号的问题。这种检测问题通常被称为高斯-高斯问题,因为信号和噪声都被假定为具有高斯分布。我们提出了基于单次观测和多次观测的SOG模型信号自适应检测器。只需进行一次观察,就可以采用类似于广义似然比检验(GLRT)的方式得出检测器,但是根据训练数据,将未知协方差结构替换为样本协方差矩阵。所提出的检测器是恒定的误报率(CFAR)检测器。作为比较,我们还基于与SOG模型相同的噪声条件下的多次观测,得出了用于一阶高斯(FOG)模型的自适应检测器。单看,SOG模型的看似临时CFAR检测器就是真正的GLRT,因为它具有与FOG模型的GLRT CFAR检测器相同的形式。在这种情况下,我们给出了检测概率和错误警报的近似封闭形式。此外,我们研究了提出的CFAR检测器并计算了性能曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号