首页> 外文期刊>IEEE Transactions on Signal Processing >Optimal Pairwise Fourth-Order Independent Component Analysis
【24h】

Optimal Pairwise Fourth-Order Independent Component Analysis

机译:最优成对四阶独立分量分析

获取原文
获取原文并翻译 | 示例

摘要

Blind source separation (BSS) aims at the reconstruction of unknown mutually independent signals, so-called sources, from their mixtures observed at the output of a sensor array. The BSS of instantaneous linear mixtures, which finds application in numerous fields, can be solved through the statistical tool of independent component analysis (ICA). This paper concentrates on the analytic solutions for the fundamental two-signal ICA scenario. A novel estimation class, so-called general weighted fourth-order estimator (GWFOE), is put forward, which is based on the fourth-order statistics of the whitened sensor output. By means of a weight parameter, the GWFOE is able to unify a variety of apparently disparate estimation expressions previously scattered throughout the literature, including the well-known JADE method in the two-signal case. A theoretical asymptotic performance analysis is carried out, resulting in the GWFOE large-sample mean square error and the source-dependent weight value of the most efficient estimator in the class. To extend the pairwise estimators to the general scenario of more than two sources, an improved Jacobi-like optimization technique is proposed. The approach consists of calculating the necessary sensor-output fourth-order statistics at the initialization stage of the algorithm, which can lead to significant computational savings when large sample blocks are processed. Based on this idea, adaptive algorithms are also devised, showing very satisfactory convergence characteristics. Experiments illustrate the good performance of these optimal pairwise ICA strategies, in both off- and on-line processing modes.
机译:盲源分离(BSS)旨在从在传感器阵列的输出端观察到的混合信号中重建未知的相互独立的信号,即所谓的信号源。瞬态线性混合物的BSS在众多领域中都有应用,可以通过独立成分分析(ICA)的统计工具来解决。本文着重于基本的两信号ICA方案的解析解。提出了一种新颖的估计类,即所谓的通用加权四阶估计器(GWFOE),该类基于白化传感器输出的四阶统计量。借助权重参数,GWFOE能够统一先前分散在整个文献中的各种明显不同的估计表达式,包括在双信号情况下众所周知的JADE方法。进行了理论上的渐进性能分析,得出了GWFOE大样本均方误差和该类中最有效的估计量的源相关权重值。为了将成对估计量扩展到两个以上源的一般情况,提出了一种改进的类似于Jacobi的优化技术。该方法包括在算法的初始化阶段计算必要的传感器输出四阶统计量,当处理大样本块时,这可以节省大量计算量。基于此思想,还设计了自适应算法,显示出非常令人满意的收敛特性。实验说明了这些最佳成对ICA策略在离线和在线处理模式下的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号