首页> 外文期刊>IEEE Transactions on Signal Processing >Fast Techniques for Computing Finite-Length MIMO MMSE Decision Feedback Equalizers
【24h】

Fast Techniques for Computing Finite-Length MIMO MMSE Decision Feedback Equalizers

机译:计算有限长度MIMO MMSE决策反馈均衡器的快速技术

获取原文
获取原文并翻译 | 示例

摘要

Multiple-input multiple-output (MIMO) digital communication systems have received great attention due to their potential of increasing the overall system throughput. In such systems, MIMO decision feedback equalization (DFE) schemes are often used to mitigate intersymbol interference (ISI) resulting from channel multipath propagation. In this context, the existing computationally efficient methods for exact estimation of the DFE filters under minimum mean-square-error criteria (MMSE-DFE) rely on fast Cholesky decomposition and back-substitution or Levinson techniques. These methods may still present several difficulties in implementation as the demand on higher transmission rates increases, and thus a simple solution is necessary. In this paper, new procedures for fast computation of the MIMO-MMSE-DFE are presented. The new algorithms are obtained from a simple observation, namely, that the optimal feedforward filter (FFF) is related to the well-known Kalman gain matrix, commonly encountered in fast recursive least squares adaptive algorithms--for which fast recursions exist and are readily applicable. Moreover, the feedback filter can be easily computed via stable fast MIMO convolution techniques. As a result, the proposed method is less complex, more structured, and can be as reliable in finite precision as known approaches in the literature.
机译:由于多输入多输出(MIMO)数字通信系统具有增加整体系统吞吐量的潜力,因此备受关注。在这样的系统中,MIMO判决反馈均衡(DFE)方案通常用于减轻由信道多径传播导致的符号间干扰(ISI)。在这种情况下,用于在最小均方误差标准(MMSE-DFE)下精确估计DFE滤波器的现有计算有效方法依赖于快速的Cholesky分解和反置换或Levinson技术。随着对更高传输速率的需求增加,这些方法在实现上仍然可能存在一些困难,因此,需要一种简单的解决方案。本文提出了用于MIMO-MMSE-DFE快速计算的新程序。从一个简单的观察中获得了新算法,即最佳前馈滤波器(FFF)与众所周知的卡尔曼增益矩阵有关,而快速递归最小二乘自适应算法通常会遇到这种已知矩阵,为此,存在快速递归并且很容易实现适用。此外,可以通过稳定的快速MIMO卷积技术轻松计算出反馈滤波器。结果,所提出的方法不那么复杂,更加结构化,并且在有限精度上可以与文献中已知的方法一样可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号