首页> 外文期刊>IEEE Transactions on Signal Processing >User Authentication via Adapted Statistical Models of Face Images
【24h】

User Authentication via Adapted Statistical Models of Face Images

机译:通过面部图像的自适应统计模型进行用户身份验证

获取原文
获取原文并翻译 | 示例

摘要

It has been previously demonstrated that systems based on local features and relatively complex statistical models, namely, one-dimensional (1-D) hidden Markov models (HMMs) and pseudo-two-dimensional (2-D) HMMs, are suitable for face recognition. Recently, a simpler statistical model, namely, the Gaussian mixture model (GMM), was also shown to perform well. In much of the literature devoted to these models, the experiments were performed with controlled images (manual face localization, controlled lighting, background, pose, etc). However, a practical recognition system has to be robust to more challenging conditions. In this article we evaluate, on the relatively difficult BANCA database, the performance, robustness and complexity of GMM and HMM-based approaches, using both manual and automatic face localization. We extend the GMM approach through the use of local features with embedded positional information, increasing performance without sacrificing its low complexity. Furthermore, we show that the traditionally used maximum likelihood (ML) training approach has problems estimating robust model parameters when there is only a few training images available. Considerably more precise models can be obtained through the use of Maximum a posteriori probability (MAP) training. We also show that face recognition techniques which obtain good performance on manually located faces do not necessarily obtain good performance on automatically located faces, indicating that recognition techniques must be designed from the ground up to handle imperfect localization. Finally, we show that while the pseudo-2-D HMM approach has the best overall performance, authentication time on current hardware makes it impractical. The best tradeoff in terms of authentication time, robustness and discrimination performance is achieved by the extended GMM approach.
机译:先前已经证明,基于局部特征和相对复杂的统计模型(即一维(1-D)隐藏马尔可夫模型(HMM)和伪二维(2-D)HMM)的系统适用于人脸承认。最近,还显示了一种更简单的统计模型,即高斯混合模型(GMM),效果良好。在许多专门针对这些模型的文献中,都是使用受控图像(人脸局部定位,受控照明,背景,姿势等)进行实验的。但是,实际的识别系统必须对更具挑战性的条件具有鲁棒性。在本文中,我们在相对困难的BANCA数据库上使用手动和自动面部定位对GMM和基于HMM的方法的性能,鲁棒性和复杂性进行了评估。我们通过将局部特征与嵌入的位置信息结合使用来扩展GMM方法,从而在不降低复杂性的前提下提高性能。此外,我们表明,当只有少数训练图像可用时,传统上使用的最大似然(ML)训练方法在估计鲁棒模型参数方面存在问题。通过使用最大后验概率(MAP)训练可以获得相当精确的模型。我们还表明,在手动定位的面部上获得良好性能的面部识别技术并不一定在自动定位的面部上获得良好性能,这表明识别技术必须从头开始设计,以应对不完善的定位。最后,我们表明,虽然伪2维HMM方法具有最佳的整体性能,但在当前硬件上进行身份验证时间使其不切实际。通过扩展的GMM方法,可以在认证时间,鲁棒性和辨别性能方面取得最佳折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号