首页> 外文期刊>IEEE Transactions on Signal Processing >Estimation in Gaussian Graphical Models Using Tractable Subgraphs: A Walk-Sum Analysis
【24h】

Estimation in Gaussian Graphical Models Using Tractable Subgraphs: A Walk-Sum Analysis

机译:高斯图形模型中使用可移动子图的估计:步行和分析

获取原文
获取原文并翻译 | 示例

摘要

Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fields such as computer vision, image processing, and distributed sensor networks. In this paper, we present a general class of algorithms for estimation in Gaussian graphical models with arbitrary structure. These algorithms involve a sequence of inference problems on tractable subgraphs over subsets of variables. This framework includes parallel iterations such as embedded trees, serial iterations such as block Gauss–Seidel, and hybrid versions of these iterations. We also discuss a method that uses local memory at each node to overcome temporary communication failures that may arise in distributed sensor network applications. We analyze these algorithms based on the recently developed walk-sum interpretation of Gaussian inference. We describe the walks “computed” by the algorithms using walk-sum diagrams, and show that for iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed in walk-summable models. Consequently, we are free to choose spanning trees and subsets of variables adaptively at each iteration. This leads to efficient methods for optimizing the next iteration step to achieve maximum reduction in error. Simulation results demonstrate that these nonstationary algorithms provide a significant speedup in convergence over traditional one-tree and two-tree iterations.
机译:图形模型为统计信号处理提供了强大的形式主义。由于其先进的建模功能,他们已在各种领域中找到了应用,例如计算机视觉,图像处理和分布式传感器网络。在本文中,我们提出了用于在具有任意结构的高斯图形模型中进行估计的一类通用算法。这些算法涉及变量子集的可处理子图上的一系列推理问题。该框架包括并行迭代(例如嵌入式树),串行迭代(例如块高斯-赛德尔)以及这些迭代的混合版本。我们还将讨论一种方法,该方法在每个节点上使用本地内存来克服在分布式传感器网络应用程序中可能出现的临时通信故障。我们基于最近开发的高斯推断的步加和解释来分析这些算法。我们描述了使用步行总和图由算法“计算”的步行,并表明对于基于非常大且灵活的子图序列集的迭代,可以保证步行总和模型的收敛性。因此,我们可以在每次迭代时自由选择生成树和变量子集。这导致了用于优化下一个迭代步骤以最大程度减少错误的有效方法。仿真结果表明,这些非平稳算法大大提高了传统一棵树和两棵树迭代的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号