首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributional System Representations on Bandlimited Signals
【24h】

Distributional System Representations on Bandlimited Signals

机译:带限信号上的分配系统表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper we analyze the distributional convergence behavior of time-domain convolution type system representations on the Paley-Wiener space ${cal PW}_{pi}^{1}$. Two convolution integrals as well as the discrete counterpart, the convolution sum, are treated. It is shown that there exist stable linear time-invariant (LTI) systems for which the convolution integral representation does not exist because the integral is divergent, even if the convergence is interpreted in a distributional sense. Furthermore, we completely characterize all stable LTI systems for which a convolution representation is possible by giving a necessary and sufficient condition for convergence. The classical and the distributional convergence behavior are compared, and differences between the convergence of the convolution integral and the convolution sum are discussed. Finally, the results are illustrated by numerical examples.
机译:在本文中,我们分析了时域卷积型系统表示在Paley-Wiener空间$ {cal PW} _ {pi} ^ {1} $上的分布收敛行为。处理了两个卷积积分以及离散副本,即卷积和。结果表明,存在稳定的线性时不变(LTI)系统,即使积分是在分布意义上解释的,由于积分是发散的,因此不存在卷积积分表示。此外,我们通过给出收敛的必要和充分条件,完全表征了所有可能进行卷积表示的稳定LTI系统。比较了经典的和分布的收敛性,讨论了卷积积分的收敛性与卷积和的区别。最后,通过数值示例说明了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号