首页> 外文期刊>Signal Processing, IEEE Transactions on >Steady-State MSE Performance Analysis of Mixture Approaches to Adaptive Filtering
【24h】

Steady-State MSE Performance Analysis of Mixture Approaches to Adaptive Filtering

机译:混合方法自适应滤波的稳态MSE性能分析

获取原文

摘要

In this paper, we consider mixture approaches that adaptively combine outputs of several parallel running adaptive algorithms. These parallel units can be considered as diversity branches that can be exploited to improve the overall performance. We study various mixture structures where the final output is constructed as the weighted linear combination of the outputs of several constituent filters. Although the mixture structure is linear, the combination weights can be updated in a highly nonlinear manner to minimize the final estimation error such as in Singer and Feder 1999; Arenas-Garcia, Figueiras-Vidal, and Sayed 2006; Lopes, Satorius, and Sayed 2006; Bershad, Bermudez, and Tourneret 2008; and Silva and Nascimento 2008. We distinguish mixture approaches that are convex combinations (where the linear mixture weights are constrained to be nonnegative and sum up to one) [Singer and Feder 1999; Arenas-Garcia, Figueiras-Vidal, and Sayed 2006], affine combinations (where the linear mixture weights are constrained to sum up to one) [Bershad, Bermudez, and Tourneret 2008] and, finally, unconstrained linear combinations of constituent filters [Kozat and Singer 2000]. We investigate mixture structures with respect to their final mean-square error (MSE) and tracking performance in the steady state for stationary and certain nonstationary data, respectively. We demonstrate that these mixture approaches can greatly improve over the performance of the constituent filters. Our analysis is also generic such that it can be applied to inhomogeneous mixtures of constituent adaptive branches with possibly different structures, adaptation methods or having different filter lengths.
机译:在本文中,我们考虑将几种并行运行的自适应算法的输出自适应组合的混合方法。这些并行单元可以视为可以用来改善整体性能的分集分支。我们研究了各种混合结构,其中最终输出构造为几个组成滤波器的输出的加权线性组合。尽管混合结构是线性的,但是可以以高度非线性的方式更新组合权重,以最大程度地减少最终估计误差,例如在Singer和Feder 1999中。阿雷纳斯·加西亚(Arenas-Garcia),菲盖拉斯·维达尔(Figueiras-Vidal)和赛义德(Sayed)2006; Lopes,Satorius和Sayed 2006; Bershad,Bermudez和Tourneret 2008;以及Silva和Nascimento2008。我们区分了凸组合的混合方法(线性混合权重被约束为非负且总和为1)[Singer and Feder 1999; Arenas-Garcia,Figueiras-Vidal和Sayed 2006],仿射组合(其中线性混合权重被约束为一个总和)[Bershad,Bermudez和Tourneret 2008],最后是组成滤波器的无约束线性组合[Kozat和Singer [2000]。我们针对其最终均方误差(MSE)和稳态分别针对静态和某些非平稳数据的跟踪性能研究混合结构。我们证明了这些混合方法可以大大改善组成过滤器的性能。我们的分析也是通用的,因此可以应用于结构可能不同,适应方法不同或滤波器长度不同的自适应分支的不均匀混合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号