首页> 外文期刊>Signal Processing, IEEE Transactions on >A Continuous-Time Linear System Identification Method for Slowly Sampled Data
【24h】

A Continuous-Time Linear System Identification Method for Slowly Sampled Data

机译:慢采样数据的连续时间线性系统辨识方法

获取原文

摘要

Both direct and indirect methods exist for identifying continuous-time linear systems. A direct method estimates continuous-time input and output signals from their samples and then use them to obtain a continuous-time model, whereas an indirect method estimates a discrete-time model first. Both methods rely on fast sampling to ensure good accuracy. In this paper, we propose a more direct method where a continuous-time linear model is directly fitted to the available samples. This method produces an exact model asymptotically, modulo some possible aliasing ambiguity, even when the sampling rate is relatively slow. We also state conditions under which the aliasing ambiguity can be resolved, and we provide experiments showing that the proposed method is a valid option when a slow sampling frequency must be used but a large number of samples is available.
机译:存在直接和间接方法来识别连续时间线性系统。直接方法从其样本中估计连续时间的输入和输出信号,然后使用它们来获得连续时间模型,而间接方法则首先估计离散时间模型。两种方法都依赖于快速采样以确保良好的准确性。在本文中,我们提出了一种更直接的方法,其中将连续时间线性模型直接拟合到可用样本。该方法渐近地生成精确的模型,以一些可能的混叠模糊度为模,即使当采样速率相对较慢时也是如此。我们还陈述了可以解决混叠歧义的条件,并且我们提供的实验表明,当必须使用慢采样频率但有大量样本可用时,该方法是有效的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号