首页> 外文期刊>Signal Processing, IEEE Transactions on >Beamforming and Rate Allocation in MISO Cognitive Radio Networks
【24h】

Beamforming and Rate Allocation in MISO Cognitive Radio Networks

机译:MISO认知无线电网络中的波束成形和速率分配

获取原文

摘要

We consider decentralized multiantenna cognitive radio networks where the secondary (cognitive) users are granted simultaneous spectrum access along with the license-holding (primary) users. We treat the problem of distributed beamforming and rate allocation for the secondary users such that the minimum weighted secondary rate is maximized. Such an optimization is subject to (1) a limited weighted sum-power budget for the secondary users and (2) guaranteed protection for the primary users in the sense that the interference level imposed on each primary receiver does not exceed a specified level. Based on the decoding method deployed by the secondary receivers, we consider three scenarios for solving this problem. In the first scenario, each secondary receiver decodes only its designated transmitter while suppressing the rest as Gaussian interferers (single-user decoding). In the second case, each secondary receiver employs the maximum likelihood decoder (MLD) to jointly decode all secondary transmissions. In the third one, each secondary receiver uses the unconstrained group decoder (UGD). By deploying the UGD, each secondary user is allowed to decode any arbitrary subset of users (which contains its designated user) after suppressing or canceling the remaining users. We offer an optimal distributed algorithm for designing the beamformers and allocating rates in the first scenario (i.e., with single-user decoding). We also provide explicit formulations of the optimization problems for the latter two scenarios (with the MLD and the UGD, respectively), which, however are nonconvex. While we provide a suboptimal centralized algorithm for the case with MLD, neither of the two scenarios can be solved efficiently in a decentralized setup. As a remedy, we offer two-stage suboptimal distributed algorithms for solving the problem for the MLD and UGD scenarios. In the first stage, the beamformers and rates are determined in a distributed fashion after assuming single user dec-noding at each secondary receiver. By using these beamformer designs, MLD often and UGD always allow for supporting rates higher than those achieved in the first stage. Based on this observation, we construct the second stage by offering optimal distributed low-complexity algorithms to allocate excess rates to the secondary users such that a notion of fairness is maintained. Analytical and empirical results demonstrate the gains yielded by the proposed rate allocation and the beamformer design algorithms.
机译:我们考虑分散的多天线认知无线电网络,在该网络中,次要(认知)用户与许可持有(主要)用户一起被同时授予频谱访问权限。我们为次级用户处理分布式波束成形和速率分配的问题,以使最小加权次级速率最大化。这样的优化受制于(1)二级用户的有限加权总和功率预算,以及(2)在强加于每个主要接收机的干扰水平不超过指定水平的意义上,对主要用户的保证保护。基于次要接收器部署的解码方法,我们考虑了三种解决方案。在第一种情况下,每个辅助接收器仅解码其指定的发送器,而将其余的抑制为高斯干扰源(单用户解码)。在第二种情况下,每个辅助接收器都采用最大似然解码器(MLD)共同解码所有辅助传输。在第三个中,每个辅助接收器都使用无约束组解码器(UGD)。通过部署UGD,允许每个辅助用户在抑制或取消其余用户之后解码用户的任意子集(包含其指定用户)。我们提供了一种最佳的分布式算法,用于在第一种情况下(即使用单用户解码)设计波束形成器并分配速率。我们还为后两种情况(分别使用MLD和UGD)提供了优化问题的明确表述,但是这是非凸的。尽管我们针对MLD的情况提供了次优的集中式算法,但在分散式设置中,这两种情况均无法有效解决。作为补救措施,我们提供了两阶段次佳的分布式算法来解决MLD和UGD方案的问题。在第一阶段,在假设每个次级接收器都由单个用户拒绝后,以分布式方式确定波束形成器和速率。通过使用这些波束成形器设计,MLD通常和UGD始终可以提供比第一阶段更高的支持率。基于此观察,我们通过提供最佳的分布式低复杂度算法来为第二用户分配超额费率,从而保持公平的概念来构建第二阶段。分析和经验结果证明了所提出的速率分配和波束形成器设计算法所产生的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号