首页> 外文期刊>Signal Processing, IEEE Transactions on >Asymptotic Source Detection Performance of Gamma-Ray Imaging Systems Under Model Mismatch
【24h】

Asymptotic Source Detection Performance of Gamma-Ray Imaging Systems Under Model Mismatch

机译:模型不匹配下伽马射线成像系统的渐近源检测性能

获取原文
获取原文并翻译 | 示例

摘要

Likelihood-based test statistics for the task of detecting a radioactive source in background using a gamma-ray imaging system often have intractable distributions. This complicates the tasks of predicting detection performance and setting thresholds that ensure desired false-alarm rates. Asymptotic distributions of test statistics can aid in predicting performance and in setting detection thresholds. However, in applications with complex sensors, like gamma-ray imaging, often only approximate statistical models for the measurements are available. Standard asymptotic approximations can yield inaccurate performance predictions when based on misspecified models. This paper considers asymptotic properties of detection tests based on maximum likelihood (ML) estimates under model mismatch, i.e., when the statistical model used for detection differs from the true distribution. We provide general expressions for the asymptotic distribution of likelihood-based test statistics when the number of measurements is Poisson, and expressions specific to gamma-ray source detection that one can evaluate using a modest amount of data from a real system or Monte Carlo simulation. Considering a simulated Compton imaging system, we show that the proposed expressions yield more accurate detection performance predictions than previous expressions that ignore model mismatch. These expressions require less data and computation than conventional empirical methods.
机译:用于使用伽马射线成像系统在背景中检测放射性源的任务的基于似然性的测试统计数据通常具有难以理解的分布。这使预测检测性能和设置阈值(确保所需的误报率)的任务变得复杂。测试统计量的渐近分布可以帮助预测性能并设置检测阈值。但是,在具有复杂传感器的应用中(例如伽马射线成像),通常仅提供用于测量的近似统计模型。当基于错误指定的模型时,标准渐近近似会产生不正确的性能预测。本文基于模型不匹配时(即,当用于检测的统计模型与真实分布不同时)的最大似然(ML)估计来考虑检测测试的渐近性质。当测量次数为Poisson时,我们提供基于似然的检验统计量的渐近分布的一般表达式,以及可以使用来自真实系统或蒙特卡洛模拟的少量数据进行评估的特定于伽马射线源检测的表达式。考虑到模拟的康普顿成像系统,我们证明了所提出的表达式比忽略模型不匹配的以前的表达式产生更准确的检测性能预测。这些表达式比常规的经验方法需要更少的数据和计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号