首页> 外文期刊>Signal Processing, IEEE Transactions on >Maximum Likelihood Direction-of-Arrival Estimation of Underwater Acoustic Signals Containing Sinusoidal and Random Components
【24h】

Maximum Likelihood Direction-of-Arrival Estimation of Underwater Acoustic Signals Containing Sinusoidal and Random Components

机译:包含正弦和随机分量的水下声信号的最大似然到达方向估计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of maximum-likelihood (ML) direction-of-arrival (DOA) estimation of underwater acoustic signals from ships, submarines, or torpedoes, which contain both sinusoidal and random components, and are called mixed signals in this paper. We model the mixed signals as the mixture of deterministic sinusoidal signals and stochastic Gaussian signals, and derive the ML DOA estimator for the mixed signals under spatially white noise. We compute the asymptotic error covariance matrix of the proposed ML estimator, as well as that of the typical stochastic estimator assuming zero-mean Gaussian signals, for DOA estimation of mixed signals. Our analytical comparison and numerical examples show that the proposed ML estimator, which takes advantage of the sinusoidal components in the mixed signals, improves the DOA estimation accuracy for the mixed signals compared with the typical stochastic estimator assuming zero-mean Gaussian signals.
机译:我们考虑了来自船舶,潜艇或鱼雷的水下声信号的最大似然(ML)到达方向(DOA)估计问题,该信号包含正弦和随机分量,在本文中被称为混合信号。我们将混合信号建模为确定性正弦信号和随机高斯信号的混合,并在空间白噪声下导出混合信号的ML DOA估计器。对于混合信号的DOA估计,我们计算了所提出的ML估计器以及典型的随机估计器(假设零均值高斯信号)的渐近误差协方差矩阵。我们的分析比较和数值示例表明,所提出的ML估计器利用混合信号中的正弦分量,与假定零均值高斯信号的典型随机估计器相比,提高了混合信号的DOA估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号