首页> 外文期刊>Signal Processing, IEEE Transactions on >Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors
【24h】

Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors

机译:阵列协方差矢量的稀疏表示的到达方向估计

获取原文
获取原文并翻译 | 示例

摘要

A new direction-of-arrival (DOA) estimation method is proposed based on a novel data model using the concept of a sparse representation of array covariance vectors (SRACV), in which DOA estimation is achieved by jointly finding the sparsest coefficients of the array covariance vectors in an overcomplete basis. The proposed method not only has high resolution and the capability of estimating coherent signals based on an arbitrary array, but also gives an explicit error-suppression criterion that makes it statistically robust even in low signal-to-noise-ratio (SNR) cases. Simulation experiments are conducted to validate the effectiveness of the proposed method. The performance is compared with several existing DOA estimation methods and the Cramér–Rao lower bound (CRLB).
机译:基于阵列协方差矢量(SRACV)的稀疏表示的概念,基于新颖的数据模型,提出了一种新的到达方向(DOA)估计方法,其中DOA估计是通过共同找到阵列中最稀疏的系数来实现的协方差向量过于完整。所提出的方法不仅具有高分辨率和基于任意阵列估计相干信号的能力,而且给出了显式的误差抑制标准,即使在低信噪比(SNR)情况下,它也具有统计上的鲁棒性。仿真实验进行了验证该方法的有效性。该性能与几种现有的DOA估计方法和Cramér-Rao下界(CRLB)进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号