首页> 外文期刊>Signal Processing, IEEE Transactions on >A Unified Analysis of Max-Min Weighted SINR for MIMO Downlink System
【24h】

A Unified Analysis of Max-Min Weighted SINR for MIMO Downlink System

机译:MIMO下行链路系统的最大-最小加权SINR统一分析

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the max-min weighted signal-to-interference-plus-noise ratio (SINR) problem in the multiple- input-multiple-output (MIMO) downlink, where multiple users are weighted according to priority and are subject to a weighted-sum-power constraint. First, we study the multiple-input-single-output (MISO) and single-input-multiple- output (SIMO) problems using nonlinear Perron–Frobenius theory. As a by-product, we solve the open problem of convergence for a previously proposed MISO algorithm by Wiesel, Eldar, and Shamai in 2006. Furthermore, we unify our analysis with respect to the previous alternate optimization algorithm proposed by Tan, Chiang, and Srikant in 2009, by showing that our MISO result can, in fact, be derived from their algorithm. Next, we combine our MISO and SIMO results into an algorithm for the MIMO problem. We show that our proposed algorithm is optimal when the channels are rank-one, or when the network is operating in the low signal-to-noise ratio (SNR) region. Finally, we prove the parametric continuity of the MIMO problem in the power constraint, and we use this insight to propose a heuristic initialization strategy for improving the performance of our (generally) suboptimal MIMO algorithm. The proposed initialization strategy exhibits improved performance over random initialization.
机译:本文研究了多输入多输出(MIMO)下行链路中的最大-最小加权信号干扰加噪声比(SINR)问题,其中多个用户根据优先级进行加权并经过加权-sum-power约束。首先,我们使用非线性Perron–Frobenius理论研究多输入单输出(MISO)和单输入多输出(SIMO)问题。作为副产品,我们解决了Wiesel,Eldar和Shamai于2006年提出的先前提出的MISO算法的开放性收敛问题。此外,我们针对Tan,Chiang和Chen提出的先前的替代优化算法统一了我们的分析。 Srikant在2009年通过证明我们的MISO结果实际上可以从他们的算法中得出。接下来,我们将MISO和SIMO结果合并为MIMO问题的算法。我们表明,当信道为第一名时,或者当网络在低信噪比(SNR)区域中运行时,我们提出的算法是最佳的。最后,我们证明了功率约束条件下MIMO问题的参数连续性,并且我们利用这一见识提出了一种启发式初始化策略,以改善我们(通常)次优MIMO算法的性能。所提出的初始化策略比随机初始化具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号