首页> 外文期刊>Signal Processing, IEEE Transactions on >Blind Separation of Noncircular Correlated Sources Using Gaussian Entropy Rate Stationary Gaussian Sources
【24h】

Blind Separation of Noncircular Correlated Sources Using Gaussian Entropy Rate Stationary Gaussian Sources

机译:高斯熵率平稳高斯源对非圆形相关源的盲分离

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new blind source separation (BSS) algorithm for correlated noncircular sources that uses only second-order statistics and fully takes the correlation structure into account. We propose a parametric entropy rate estimator that uses a widely linear autoregressive (AR) model for the sources, and derive the BSS algorithm by minimizing the mutual information of separated time series. We compare the performance of the new algorithm with competing algorithms and demonstrate its superior separation performance as well as its effectiveness in separation of non-Gaussian sources when the identification conditions are met.
机译:我们针对相关的非圆形源引入了一种新的盲源分离(BSS)算法,该算法仅使用二阶统计量,并充分考虑了相关结构。我们提出了一种参数熵速率估计器,该参数熵估计器使用广泛的线性自回归(AR)模型作为源,并通过最小化分离的时间序列的互信息来导出BSS算法。我们将新算法与竞争算法的性能进行了比较,并证明了其优越的分离性能以及在满足识别条件时其在非高斯源分离中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号