首页> 外文期刊>Signal Processing, IEEE Transactions on >Multiobjective Optimization of OFDM Radar Waveform for Target Detection
【24h】

Multiobjective Optimization of OFDM Radar Waveform for Target Detection

机译:目标检测的OFDM雷达波形多目标优化

获取原文

摘要

We propose a multiobjective optimization (MOO) technique to design an orthogonal-frequency-division multiplexing (OFDM) radar signal for detecting a moving target in the presence of multipath reflections. We employ an OFDM signal to increase the frequency diversity of the system, as different scattering centers of a target resonate variably at different frequencies. Moreover, the multipath propagation increases the spatial diversity by providing extra “looks” at the target. First, we develop a parametric OFDM radar model by reformulating the target-detection problem as the task of sparse-signal spectrum estimation. At a particular range cell, we exploit the sparsity of multiple paths and the knowledge of the environment to estimate the paths along which the target responses are received. Then, to estimate the sparse vector, we employ a collection of multiple small Dantzig selectors (DS) that utilizes more prior structures of the sparse vector. We use the $ell_1$ -constrained minimal singular value ( $ell_1$-CMSV) of the measurement matrix to analytically evaluate the reconstruction performance and demonstrate that our decomposed DS performs better than the standard DS. In addition, we propose a constrained MOO-based algorithm to optimally design the spectral parameters of the OFDM waveform for the next coherent processing interval by simultaneously optimizing two objective functions: minimizing the upper bound on the estimation error to improve the efficiency of sparse-recovery and maximizing the squared Mahalanobis-distance to increase the performance of the underlying detection problem. We provide a few numerical examples to illustrate the performance characteristics of the sparse recovery and demonstrate the achieved performance improvement due to adaptive OFDM waveform design.
机译:我们提出了一种多目标优化(MOO)技术,以设计一种正交频分复用(OFDM)雷达信号,用于在存在多径反射的情况下检测运动目标。我们使用OFDM信号来增加系统的频率分集,因为目标的不同散射中心在不同的频率上会发生不同的谐振。此外,多径传播通过在目标上提供额外的“外观”来增加空间分集。首先,我们通过重新构造目标检测问题作为稀疏信号频谱估计的任务,来开发参数化OFDM雷达模型。在特定的范围单元中,我们利用多条路径的稀疏性和环境知识来估计接收目标响应所沿着的路径。然后,为了估计稀疏向量,我们采用了多个小的Dantzig选择器(DS)的集合,这些选择器利用了稀疏向量的更多现有结构。我们使用测量矩阵的$ ell_1 $约束的最小奇异值($ ell_1 $ -CMSV)来分析评估重建性能,并证明我们分解后的DS性能优于标准DS。另外,我们提出了一种基于约束MOO的算法,通过同时优化两个目标函数来优化设计下一个相干处理间隔的OFDM波形的频谱参数:最小化估计误差的上限,以提高稀疏恢复的效率最大化平方马氏距离,以提高潜在检测问题的性能。我们提供了一些数值示例来说明稀疏恢复的性能特征,并演示由于自适应OFDM波形设计而实现的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号