首页> 外文期刊>Signal Processing, IEEE Transactions on >Location Estimation of a Random Signal Source Based on Correlated Sensor Observations
【24h】

Location Estimation of a Random Signal Source Based on Correlated Sensor Observations

机译:基于相关传感器观测值的随机信号源位置估计

获取原文

摘要

The problem of location estimation of a source of random signals using a network of sensors is considered. A novel maximum-likelihood estimation (MLE) based approach using copula functions is proposed. The measurements received at the sensors are often spatially correlated and characterized by a multivariate distribution. Using the theory of copulas, the joint parametric density of sensor observations (joint likelihood) is approximated assuming only the knowledge of the marginal likelihood functions of the sensor observations. The problem of selecting the best copula function to model the joint likelihood is approached as one of model selection and a model fusion strategy is used to reduce the effect of selection bias. An example involving source localization of a Poisson source is presented to illustrate the proposed approach and demonstrate its performance.
机译:考虑了使用传感器网络对随机信号源进行位置估计的问题。提出了一种基于copula函数的新颖的基于最大似然估计的方法。传感器处接收到的测量值通常在空间上相互关联,并具有多元分布特征。使用copulas理论,仅假设了解传感器观测值的边际似然函数,即可估算传感器观测值的联合参数密度(联合似然性)。选择最佳copula函数来建模关节似然性的问题是模型选择之一,并且使用模型融合策略来减少选择偏差的影响。给出了一个涉及泊松源定位的示例,以说明所提出的方法并演示其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号