首页> 外文期刊>Signal Processing, IEEE Transactions on >Time-Stampless Adaptive Nonuniform Sampling for Stochastic Signals
【24h】

Time-Stampless Adaptive Nonuniform Sampling for Stochastic Signals

机译:随机信号的非时戳自适应非均匀采样

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a time-stampless adaptive nonuniform sampling (TANS) framework, in which time increments between samples are determined by a function of the $m$ most recent increments and sample values. Since only past samples are used in computing time increments, it is not necessary to save sampling times (time stamps) for use in the reconstruction process. We focus on two TANS schemes for discrete-time stochastic signals: a greedy method, and a method based on dynamic programming. We analyze the performances of these schemes by computing (or bounding) their trade-offs between sampling rate and expected reconstruction distortion for autoregressive and Markovian signals. Simulation results support the analysis of the sampling schemes. We show that, by opportunistically adapting to local signal characteristics, TANS may lead to improved power efficiency in some applications.
机译:在本文中,我们介绍了一种无时间戳的自适应非均匀采样(TANS)框架,其中样本之间的时间增量由$ m $最近增量和样本值的函数确定。由于在计算时间增量时仅使用过去的样本,因此无需保存用于重建过程的采样时间(时间戳)。我们专注于两种用于离散时间随机信号的TANS方案:贪婪方法和基于动态规划的方法。我们通过计算(或限制)它们在自回归信号和马尔可夫信号的采样率和预期重构失真之间的权衡,来分析这些方案的性能。仿真结果支持对采样方案的分析。我们证明,通过机会主义地适应本地信号特征,TANS可以在某些应用中提高功率效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号