首页> 外文期刊>Signal Processing, IEEE Transactions on >Reduced-Complexity Decoders of Long Reed-Solomon Codes Based on Composite Cyclotomic Fourier Transforms
【24h】

Reduced-Complexity Decoders of Long Reed-Solomon Codes Based on Composite Cyclotomic Fourier Transforms

机译:基于复合循环傅里叶变换的长Reed-Solomon码的降复杂度解码器

获取原文
获取原文并翻译 | 示例

摘要

Long Reed–Solomon (RS) codes are desirable for digital communication and storage systems due to their improved error performance, but the high computational complexity of their decoders is a key obstacle to their adoption in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at multiple points, efficient DFT algorithms are promising in reducing the computational complexities of syndrome based decoders for long RS codes. In this correspondence, we first propose partial composite cyclotomic Fourier transforms (CCFTs) and then devise syndrome based decoders for long RS codes over large finite fields based on partial CCFTs. The new decoders based on partial CCFTs achieve a significant saving of computational complexities for long RS codes. In comparison to previous results based on Horner's rule, our hardware implementation for a (2720, 2550) shortened RS code over ${rm GF}(2^{1!2})$ achieves much higher throughputs and better area-time complexity.
机译:长里德-所罗门(RS)码由于其改进的错误性能而对于数字通信和存储系统而言是理想的,但其解码器的高计算复杂度是其在实践中应用的主要障碍。由于离散傅立叶变换(DFT)可以在多个点上评估多项式,因此有效的DFT算法有望降低针对长RS码的基于校正子的解码器的计算复杂性。在这种对应关系中,我们首先提出部分复合循环傅立叶变换(CCFT),然后基于部分CCFT设计用于大有限域上的长RS码的基于校正子的解码器。基于部分CCFT的新型解码器可大大节省长RS码的计算复杂度。与基于霍纳规则的先前结果相比,我们的(2720,2550)缩短的RS代码超过$ rm GF}(2 ^ {1!2})$的硬件实现实现了更高的吞吐量和更好的时域复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号