首页> 外文期刊>Signal Processing, IEEE Transactions on >Detecting and Counteracting Statistical Attacks in Cooperative Spectrum Sensing
【24h】

Detecting and Counteracting Statistical Attacks in Cooperative Spectrum Sensing

机译:在合作频谱感知中检测和抵消统计攻击

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a novel Bayesian method to improve the robustness of cooperative spectrum sensing against misbehaving secondary users, which may send wrong sensing reports in order to artificially increase or reduce the throughput of a cognitive network. We adopt a statistical attack model in which every malicious node is characterized by a certain probability of attack. The key features of the proposed method are: (i) combined spectrum sensing, identification of malicious users, and estimation of their attack probabilities; (ii) use of belief propagation on factor graphs to efficiently solve the Bayesian estimation problem. Our analysis shows that the proposed joint estimation approach outperforms traditional cooperation schemes based on exclusion of the unreliable nodes from the spectrum sensing process, and that it nearly achieves the performance of an ideal maximum likelihood estimation if attack probabilities remain constant over a sufficient number of sensing time slots. Results illustrate that belief propagation applied to the considered problem is robust with respect to different network parameters (e.g., numbers of reliable and malicious nodes, attack probability values, sensing duration). Finally, spectrum sensing estimates obtained via belief propagation are proved to be consistent on average for arbitrary graph size.
机译:在本文中,我们提出了一种新颖的贝叶斯方法,以提高协作频谱感知对行为不佳的二级用户的鲁棒性,该方法可能会发送错误的感知报告,以人为地增加或减少认知网络的吞吐量。我们采用统计攻击模型,其中每个恶意节点都具有一定的攻击概率。该方法的主要特点是:(i)组合频谱感知,恶意用户识别以及他们的攻击概率估计; (ii)在要素图上使用置信传播来有效解决贝叶斯估计问题。我们的分析表明,基于从频谱感知过程中排除不可靠节点的情况,所提出的联合估计方法优于传统的合作方案,并且如果在足够数量的感知上攻击概率保持恒定,则该联合估计方法几乎可以实现理想的最大似然估计的性能。时隙。结果表明,对于不同的网络参数(例如,可靠和恶意节点的数量,攻击概率值,感知持续时间),应用于所考虑问题的信念传播是可靠的。最后,事实证明,通过信念传播获得的频谱感知估计值在任意图形尺寸上均保持一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号