首页> 外文期刊>Signal Processing, IEEE Transactions on >Robust Transceiver Optimization for Downlink Coordinated Base Station Systems: Distributed Algorithm
【24h】

Robust Transceiver Optimization for Downlink Coordinated Base Station Systems: Distributed Algorithm

机译:下行协作基站系统的稳健收发器优化:分布式算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the joint transceiver design for downlink multiuser multiple-input single-output (MISO) systems with coordinated base stations (BSs) where imperfect channel state information (CSI) is available at the BSs and mobile stations (MSs). By incorporating antenna correlation at the BSs and taking channel estimation errors into account, we solve two robust design problems: 1) minimizing the weighted sum of mean-square-error (MSE) with per BS antenna power constraint, and 2) minimizing the total power of all BSs with per user MSE target and per BS antenna power constraints. These problems are solved as follows. First, for fixed receivers, we propose centralized and novel computationally efficient distributed algorithms to jointly optimize the precoders of all users. Our centralized algorithms employ the second-order-cone programming (SOCP) approach, whereas, our novel distributed algorithms use the Lagrangian dual decomposition, modified matrix fractional minimization and an iterative method. Second, for fixed BS precoders, the receivers are updated by the minimum mean-square-error (MMSE) criterion. These two steps are repeated until convergence is achieved. In all of our simulation results, we have observed that the proposed distributed algorithms achieve the same performance as that of the centralized algorithms. Moreover, computer simulations verify the robustness of the proposed robust designs compared to the nonrobustaive designs.
机译:本文考虑了具有协调基站(BS)的下行链路多用户多输入单输出(MISO)系统的联合收发器设计,其中在BS和移动台(MS)可获得不完善的信道状态信息(CSI)。通过在BS处合并天线相关性并考虑信道估计误差,我们解决了两个稳健的设计问题:1)在每个BS天线功率约束下最小化均方误差(MSE)的加权和,以及2)最小化总和具有每个用户MSE目标和每个BS天线功率约束的所有BS的功率。这些问题如下解决。首先,对于固定接收器,我们提出了集中式和新颖的计算有效的分布式算法,以共同优化所有用户的预编码器。我们的集中式算法采用了二次锥编程(SOCP)方法,而我们新颖的分布式算法则使用了拉格朗日对偶分解,改进的矩阵分数最小化和迭代方法。其次,对于固定的BS预编码器,通过最小均方误差(MMSE)准则更新接收器。重复这两个步骤,直到实现收敛。在我们所有的仿真结果中,我们都观察到,所提出的分布式算法可实现与集中式算法相同的性能。此外,与非稳健/天真设计相比,计算机仿真验证了所提出的稳健设计的稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号