首页> 外文期刊>IEEE Transactions on Signal Processing >Expectation-Maximization Gaussian-Mixture Approximate Message Passing
【24h】

Expectation-Maximization Gaussian-Mixture Approximate Message Passing

机译:期望最大化高斯混合近似消息传递

获取原文
获取原文并翻译 | 示例

摘要

When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound effect on recovery mean-squared error (MSE). If this distribution was a priori known, then one could use computationally efficient approximate message passing (AMP) techniques for nearly minimum MSE (MMSE) recovery. In practice, however, the distribution is unknown, motivating the use of robust algorithms like LASSO—which is nearly minimax optimal—at the cost of significantly larger MSE for non-least-favorable distributions. As an alternative, we propose an empirical-Bayesian technique that simultaneously learns the signal distribution while MMSE-recovering the signal—according to the learned distribution—using AMP. In particular, we model the non-zero distribution as a Gaussian mixture and learn its parameters through expectation maximization, using AMP to implement the expectation step. Numerical experiments on a wide range of signal classes confirm the state-of-the-art performance of our approach, in both reconstruction error and runtime, in the high-dimensional regime, for most (but not all) sensing operators.
机译:从嘈杂的压缩线性测量中恢复稀疏信号时,信号的非零系数分布会严重影响恢复均方误差(MSE)。如果这种分布是先验的,则可以使用计算效率高的近似消息传递(AMP)技术来实现几乎最小的MSE(MMSE)恢复。但是,实际上,分布是未知的,从而刺激了使用诸如LASSO之类的健壮算法(几乎是最小最大最优),但代价是非最不利分布的MSE大大增加。作为替代方案,我们提出了一种经验贝叶斯技术,该技术可同时学习信号分布,同时使用AMP根据学习到的分布MMSE恢复信号。特别是,我们将非零分布建模为高斯混合,并使用AMP实施期望步骤,通过期望最大化来学习其参数。对大多数(但不是全部)感测操作员,在高维范围内,在重构误差和运行时间方面,针对各种信号类别的数值实验证实了我们方法的最新性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号